get_slot_data.py 4.0 KB
Newer Older
X
fix  
xujiaqi01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
import yaml
from paddlerec.core.reader import Reader
from paddlerec.core.utils import envs
19
import math
T
tangwei 已提交
20
import os
X
fix  
xujiaqi01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
try:
    import cPickle as pickle
except ImportError:
    import pickle
from collections import Counter
import os
import paddle.fluid.incubate.data_generator as dg

class TrainReader(dg.MultiSlotDataGenerator):

    def __init__(self, config):
        dg.MultiSlotDataGenerator.__init__(self)

        if os.path.isfile(config):
            with open(config, 'r') as rb:
                _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
        else:
            raise ValueError("reader config only support yaml")

    def init(self):
        self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        self.cont_max_ = [
            5775, 257675, 65535, 969, 23159456, 431037, 56311, 6047, 29019, 11,
            231, 4008, 7393
        ]
        self.cont_diff_ = [
            self.cont_max_[i] - self.cont_min_[i]
            for i in range(len(self.cont_min_))
        ]
        self.cont_idx_ = list(range(1, 14))
        self.cat_idx_ = list(range(14, 40))

        dense_feat_names = ['I' + str(i) for i in range(1, 14)]
        sparse_feat_names = ['C' + str(i) for i in range(1, 27)]
        target = ['label']

        self.label_feat_names = target + dense_feat_names + sparse_feat_names

        self.cat_feat_idx_dict_list = [{} for _ in range(26)]
T
for mat  
tangwei 已提交
60

X
fix  
xujiaqi01 已提交
61 62 63 64 65 66 67
        # TODO: set vocabulary dictionary
        vocab_dir = "./vocab/"
        for i in range(26):
            lookup_idx = 1  # remain 0 for default value
            for line in open(
                    os.path.join(vocab_dir, 'C' + str(i + 1) + '.txt')):
                self.cat_feat_idx_dict_list[i][line.strip()] = lookup_idx
T
for mat  
tangwei 已提交
68
                lookup_idx += 1
X
fix  
xujiaqi01 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    def _process_line(self, line):
        features = line.rstrip('\n').split('\t')
        label_feat_list = [[] for _ in range(40)]
        for idx in self.cont_idx_:
            if features[idx] == '':
                label_feat_list[idx].append(0)
            else:
                # 0-1 minmax norm
                # label_feat_list[idx].append((float(features[idx]) - self.cont_min_[idx - 1]) /
                #                             self.cont_diff_[idx - 1])
                # log transform
                label_feat_list[idx].append(
                    math.log(4 + float(features[idx]))
                    if idx == 2 else math.log(1 + float(features[idx])))
        for idx in self.cat_idx_:
            if features[idx] == '' or features[
T
for mat  
tangwei 已提交
86
                idx] not in self.cat_feat_idx_dict_list[idx - 14]:
X
fix  
xujiaqi01 已提交
87 88 89
                label_feat_list[idx].append(0)
            else:
                label_feat_list[idx].append(self.cat_feat_idx_dict_list[
T
for mat  
tangwei 已提交
90
                                                idx - 14][features[idx]])
X
fix  
xujiaqi01 已提交
91 92
        label_feat_list[0].append(int(features[0]))
        return label_feat_list
T
for mat  
tangwei 已提交
93

X
fix  
xujiaqi01 已提交
94 95 96 97
    def generate_sample(self, line):
        """
        Read the data line by line and process it as a dictionary
        """
T
for mat  
tangwei 已提交
98

X
fix  
xujiaqi01 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        def data_iter():
            label_feat_list = self._process_line(line)
            s = ""
            for i in list(zip(self.label_feat_names, label_feat_list)):
                k = i[0]
                v = i[1]
                for j in v:
                    s += " " + k + ":" + str(j)
            print s.strip()
            yield None

        return data_iter

reader = TrainReader("../config.yaml")
reader.init()
reader.run_from_stdin()