model.py 7.3 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import paddle.fluid as fluid

17 18
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
19 20 21 22 23 24 25 26 27 28


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def xdeepfm_net(self):
        init_value_ = 0.1
        initer = fluid.initializer.TruncatedNormalInitializer(
            loc=0.0, scale=init_value_)
T
for mat  
tangwei 已提交
29

30 31 32
        is_distributed = True if envs.get_trainer() == "CtrTrainer" else False
        sparse_feature_number = envs.get_global_env("hyper_parameters.sparse_feature_number", None, self._namespace)
        sparse_feature_dim = envs.get_global_env("hyper_parameters.sparse_feature_dim", None, self._namespace)
T
for mat  
tangwei 已提交
33

34
        # ------------------------- network input --------------------------
T
for mat  
tangwei 已提交
35

36
        num_field = envs.get_global_env("hyper_parameters.num_field", None, self._namespace)
X
xujiaqi01 已提交
37 38 39 40 41
        raw_feat_idx = self._sparse_data_var[1]
        raw_feat_value = self._dense_data_var[0]
        self.label = self._sparse_data_var[0]

        feat_idx = raw_feat_idx
42 43 44 45 46 47 48 49 50 51 52 53 54
        feat_value = fluid.layers.reshape(raw_feat_value, [-1, num_field, 1])  # None * num_field * 1

        feat_embeddings = fluid.embedding(
            input=feat_idx,
            is_sparse=True,
            dtype='float32',
            size=[sparse_feature_number + 1, sparse_feature_dim],
            padding_idx=0,
            param_attr=fluid.ParamAttr(initializer=initer))
        feat_embeddings = fluid.layers.reshape(
            feat_embeddings,
            [-1, num_field, sparse_feature_dim])  # None * num_field * embedding_size
        feat_embeddings = feat_embeddings * feat_value  # None * num_field * embedding_size
T
for mat  
tangwei 已提交
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        # -------------------- linear  --------------------

        weights_linear = fluid.embedding(
            input=feat_idx,
            is_sparse=True,
            dtype='float32',
            size=[sparse_feature_number + 1, 1],
            padding_idx=0,
            param_attr=fluid.ParamAttr(initializer=initer))
        weights_linear = fluid.layers.reshape(
            weights_linear, [-1, num_field, 1])  # None * num_field * 1
        b_linear = fluid.layers.create_parameter(
            shape=[1],
            dtype='float32',
            default_initializer=fluid.initializer.ConstantInitializer(value=0))
        y_linear = fluid.layers.reduce_sum(
            (weights_linear * feat_value), 1) + b_linear
T
for mat  
tangwei 已提交
73

74 75 76 77 78 79 80 81 82 83
        # -------------------- CIN  --------------------

        layer_sizes_cin = envs.get_global_env("hyper_parameters.layer_sizes_cin", None, self._namespace)
        Xs = [feat_embeddings]
        last_s = num_field
        for s in layer_sizes_cin:
            # calculate Z^(k+1) with X^k and X^0
            X_0 = fluid.layers.reshape(
                fluid.layers.transpose(Xs[0], [0, 2, 1]),
                [-1, sparse_feature_dim, num_field,
T
for mat  
tangwei 已提交
84
                 1])  # None, embedding_size, num_field, 1
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
            X_k = fluid.layers.reshape(
                fluid.layers.transpose(Xs[-1], [0, 2, 1]),
                [-1, sparse_feature_dim, 1, last_s])  # None, embedding_size, 1, last_s
            Z_k_1 = fluid.layers.matmul(
                X_0, X_k)  # None, embedding_size, num_field, last_s

            # compresses Z^(k+1) to X^(k+1)
            Z_k_1 = fluid.layers.reshape(Z_k_1, [
                -1, sparse_feature_dim, last_s * num_field
            ])  # None, embedding_size, last_s*num_field
            Z_k_1 = fluid.layers.transpose(
                Z_k_1, [0, 2, 1])  # None, s*num_field, embedding_size
            Z_k_1 = fluid.layers.reshape(
                Z_k_1, [-1, last_s * num_field, 1, sparse_feature_dim]
            )  # None, last_s*num_field, 1, embedding_size  (None, channal_in, h, w) 
            X_k_1 = fluid.layers.conv2d(
                Z_k_1,
                num_filters=s,
                filter_size=(1, 1),
                act=None,
                bias_attr=False,
                param_attr=fluid.ParamAttr(
                    initializer=initer))  # None, s, 1, embedding_size
            X_k_1 = fluid.layers.reshape(
                X_k_1, [-1, s, sparse_feature_dim])  # None, s, embedding_size

            Xs.append(X_k_1)
            last_s = s

        # sum pooling
        y_cin = fluid.layers.concat(Xs[1:],
                                    1)  # None, (num_field++), embedding_size
        y_cin = fluid.layers.reduce_sum(y_cin, -1)  # None, (num_field++)
        y_cin = fluid.layers.fc(input=y_cin,
                                size=1,
                                act=None,
                                param_attr=fluid.ParamAttr(initializer=initer),
                                bias_attr=None)
        y_cin = fluid.layers.reduce_sum(y_cin, dim=-1, keep_dim=True)

        # -------------------- DNN --------------------

        layer_sizes_dnn = envs.get_global_env("hyper_parameters.layer_sizes_dnn", None, self._namespace)
        act = envs.get_global_env("hyper_parameters.act", None, self._namespace)
        y_dnn = fluid.layers.reshape(feat_embeddings,
T
for mat  
tangwei 已提交
130
                                     [-1, num_field * sparse_feature_dim])
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        for s in layer_sizes_dnn:
            y_dnn = fluid.layers.fc(input=y_dnn,
                                    size=s,
                                    act=act,
                                    param_attr=fluid.ParamAttr(initializer=initer),
                                    bias_attr=None)
        y_dnn = fluid.layers.fc(input=y_dnn,
                                size=1,
                                act=None,
                                param_attr=fluid.ParamAttr(initializer=initer),
                                bias_attr=None)

        # ------------------- xDeepFM ------------------

        self.predict = fluid.layers.sigmoid(y_linear + y_cin + y_dnn)
T
for mat  
tangwei 已提交
146

147
    def train_net(self):
X
fix  
xujiaqi01 已提交
148
        self.model._init_slots()
149 150
        self.xdeepfm_net()

X
xujiaqi01 已提交
151
        cost = fluid.layers.log_loss(input=self.predict, label=fluid.layers.cast(self.label, "float32"), epsilon=0.0000001)
152 153 154 155 156 157 158
        batch_cost = fluid.layers.reduce_mean(cost)
        self._cost = batch_cost

        # for auc
        predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
        label_int = fluid.layers.cast(self.label, 'int64')
        auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
T
for mat  
tangwei 已提交
159 160
                                                     label=label_int,
                                                     slide_steps=0)
161 162
        self._metrics["AUC"] = auc_var
        self._metrics["BATCH_AUC"] = batch_auc_var
T
for mat  
tangwei 已提交
163

164 165 166 167 168 169
    def optimizer(self):
        learning_rate = envs.get_global_env("hyper_parameters.learning_rate", None, self._namespace)
        optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True)
        return optimizer

    def infer_net(self, parameter_list):
X
fix  
xujiaqi01 已提交
170
        self.model._init_slots()
X
xujiaqi01 已提交
171
        self.xdeepfm_net()