network.py 18.3 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import warnings
19
import logging
C
Chengmo 已提交
20 21 22 23 24 25 26

import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.trainers.framework.dataset import DataLoader, QueueDataset

__all__ = [
    "NetworkBase", "SingleNetwork", "PSNetwork", "PslibNetwork",
C
Chengmo 已提交
27
    "CollectiveNetwork", "FineTuningNetwork"
C
Chengmo 已提交
28 29
]

30 31 32 33
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)

C
Chengmo 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

class NetworkBase(object):
    """R
    """

    def __init__(self, context):
        pass

    def build_network(self, context):
        pass


class SingleNetwork(NetworkBase):
    """R
    """

    def __init__(self, context):
51
        logger.info("Running SingleNetwork.")
C
Chengmo 已提交
52 53 54 55
        pass

    def build_network(self, context):
        context["model"] = {}
T
tangwei 已提交
56
        for model_dict in context["phases"]:
C
Chengmo 已提交
57 58 59 60 61 62 63 64 65
            context["model"][model_dict["name"]] = {}
            train_program = fluid.Program()
            startup_program = fluid.Program()
            scope = fluid.Scope()
            dataset_name = model_dict["dataset_name"]

            with fluid.program_guard(train_program, startup_program):
                with fluid.unique_name.guard():
                    with fluid.scope_guard(scope):
T
tangwei 已提交
66 67
                        model_path = envs.os_path_adapter(
                            envs.workspace_adapter(model_dict["model"]))
T
tangwei 已提交
68 69
                        model = envs.lazy_instance_by_fliename(
                            model_path, "Model")(context["env"])
C
Chengmo 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

                        if context["is_infer"]:
                            model._infer_data_var = model.input_data(
                                is_infer=context["is_infer"],
                                dataset_name=model_dict["dataset_name"])
                        else:
                            model._data_var = model.input_data(
                                dataset_name=model_dict["dataset_name"])

                        if envs.get_global_env("dataset." + dataset_name +
                                               ".type") == "DataLoader":
                            model._init_dataloader(
                                is_infer=context["is_infer"])
                            data_loader = DataLoader(context)
                            data_loader.get_dataloader(context, dataset_name,
                                                       model._data_loader)

                        if context["is_infer"]:
                            model.net(model._infer_data_var,
                                      context["is_infer"])
                        else:
                            model.net(model._data_var, context["is_infer"])
                            optimizer = model.optimizer()
                            optimizer.minimize(model._cost)
            context["model"][model_dict["name"]][
                "main_program"] = train_program
            context["model"][model_dict["name"]][
                "startup_program"] = startup_program
            context["model"][model_dict["name"]]["scope"] = scope
            context["model"][model_dict["name"]]["model"] = model
            context["model"][model_dict["name"]][
C
Chengmo 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                "default_main_program"] = train_program.clone()
            context["model"][model_dict["name"]]["compiled_program"] = None

        context["dataset"] = {}
        for dataset in context["env"]["dataset"]:
            type = envs.get_global_env("dataset." + dataset["name"] + ".type")

            if type == "QueueDataset":
                dataset_class = QueueDataset(context)
                context["dataset"][dataset[
                    "name"]] = dataset_class.create_dataset(dataset["name"],
                                                            context)

        context["status"] = "startup_pass"


class FineTuningNetwork(NetworkBase):
    """R
    """

    def __init__(self, context):
122
        logger.info("Running FineTuningNetwork.")
C
Chengmo 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    def build_network(self, context):
        context["model"] = {}
        for model_dict in context["phases"]:
            context["model"][model_dict["name"]] = {}
            train_program = fluid.Program()
            startup_program = fluid.Program()
            scope = fluid.Scope()
            dataset_name = model_dict["dataset_name"]

            with fluid.program_guard(train_program, startup_program):
                with fluid.unique_name.guard():
                    with fluid.scope_guard(scope):
                        model_path = envs.os_path_adapter(
                            envs.workspace_adapter(model_dict["model"]))
                        model = envs.lazy_instance_by_fliename(
                            model_path, "Model")(context["env"])

                        model._data_var = model.input_data(
                            dataset_name=model_dict["dataset_name"])

                        if envs.get_global_env("dataset." + dataset_name +
                                               ".type") == "DataLoader":
                            model._init_dataloader(
                                is_infer=context["is_infer"])
                            data_loader = DataLoader(context)
                            data_loader.get_dataloader(context, dataset_name,
                                                       model._data_loader)

                        model.net(model._data_var, context["is_infer"])

                        finetuning_varnames = envs.get_global_env(
                            "runner." + context["runner_name"] +
                            ".finetuning_aspect_varnames",
                            default_value=[])

                        if len(finetuning_varnames) == 0:
                            raise ValueError(
                                "nothing need to be fine tuning, you may use other traning mode"
                            )

                        if len(finetuning_varnames) != 1:
                            raise ValueError(
                                "fine tuning mode can only accept one varname now"
                            )

                        varname = finetuning_varnames[0]
                        finetuning_vars = train_program.global_block().vars[
                            varname]
                        finetuning_vars.stop_gradient = True
                        optimizer = model.optimizer()
                        optimizer.minimize(model._cost)

            context["model"][model_dict["name"]][
                "main_program"] = train_program
            context["model"][model_dict["name"]][
                "startup_program"] = startup_program
            context["model"][model_dict["name"]]["scope"] = scope
            context["model"][model_dict["name"]]["model"] = model
            context["model"][model_dict["name"]][
C
Chengmo 已提交
183
                "default_main_program"] = train_program.clone()
184
            context["model"][model_dict["name"]]["compiled_program"] = None
C
Chengmo 已提交
185 186

        context["dataset"] = {}
T
tangwei 已提交
187
        for dataset in context["env"]["dataset"]:
T
tangwei 已提交
188
            type = envs.get_global_env("dataset." + dataset["name"] + ".type")
189 190

            if type == "QueueDataset":
C
Chengmo 已提交
191 192 193 194 195 196 197 198 199 200
                dataset_class = QueueDataset(context)
                context["dataset"][dataset[
                    "name"]] = dataset_class.create_dataset(dataset["name"],
                                                            context)

        context["status"] = "startup_pass"


class PSNetwork(NetworkBase):
    def __init__(self, context):
201
        logger.info("Running PSNetwork.")
C
Chengmo 已提交
202 203 204 205
        pass

    def build_network(self, context):
        context["model"] = {}
T
tangwei 已提交
206
        if len(context["env"]["phase"]) > 1:
C
Chengmo 已提交
207 208 209 210
            warnings.warn(
                "Cluster Train Only Support One Phase.",
                category=UserWarning,
                stacklevel=2)
T
tangwei 已提交
211
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
212 213 214
        context["model"][model_dict["name"]] = {}
        dataset_name = model_dict["dataset_name"]

T
tangwei 已提交
215 216
        model_path = envs.os_path_adapter(
            envs.workspace_adapter(model_dict["model"]))
T
tangwei 已提交
217 218
        model = envs.lazy_instance_by_fliename(model_path,
                                               "Model")(context["env"])
C
Chengmo 已提交
219 220 221 222 223
        model._data_var = model.input_data(
            dataset_name=model_dict["dataset_name"])
        if envs.get_global_env("dataset." + dataset_name +
                               ".type") == "DataLoader":
            model._init_dataloader(is_infer=False)
224

C
Chengmo 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238
        model.net(model._data_var, False)
        optimizer = model.optimizer()
        strategy = self._build_strategy(context)
        optimizer = context["fleet"].distributed_optimizer(optimizer, strategy)
        optimizer.minimize(model._cost)

        context["model"][model_dict["name"]]["main_program"] = context[
            "fleet"].main_program
        context["model"][model_dict["name"]]["startup_program"] = context[
            "fleet"].startup_program
        context["model"][model_dict["name"]]["scope"] = fluid.global_scope()
        context["model"][model_dict["name"]]["model"] = model
        context["model"][model_dict["name"]]["default_main_program"] = context[
            "fleet"].main_program.clone()
239
        context["model"][model_dict["name"]]["compiled_program"] = None
C
Chengmo 已提交
240 241 242 243 244 245

        if context["fleet"].is_server():
            self._server(context)
        else:
            context["fleet"].init_worker()
            context["dataset"] = {}
T
tangwei 已提交
246
            for dataset in context["env"]["dataset"]:
T
tangwei 已提交
247 248
                type = envs.get_global_env("dataset." + dataset["name"] +
                                           ".type")
249 250 251 252 253
                if type == "DataLoader":
                    data_loader = DataLoader(context)
                    data_loader.get_dataloader(context, dataset_name,
                                               model._data_loader)
                elif type == "QueueDataset":
C
Chengmo 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                    dataset_class = QueueDataset(context)
                    context["dataset"][dataset[
                        "name"]] = dataset_class.create_dataset(
                            dataset["name"], context)
            context["status"] = "startup_pass"

    def _build_strategy(self, context):
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
        mode = envs.get_runtime_environ("train.trainer.strategy")
        assert mode in ["async", "geo", "sync", "half_async"]

        strategy = None

        if mode == "async":
            strategy = StrategyFactory.create_async_strategy()
        elif mode == "geo":
            push_num = envs.get_global_env("train.strategy.mode.push_num", 100)
            strategy = StrategyFactory.create_geo_strategy(push_num)
        elif mode == "sync":
            strategy = StrategyFactory.create_sync_strategy()
        elif mode == "half_async":
            strategy = StrategyFactory.create_half_async_strategy()

        assert strategy is not None

        context["strategy"] = strategy
        return strategy

    def _server(self, context):
        init_model_path = envs.get_global_env(
            "runner." + context["runner_name"] + ".init_model_path",
            default_value="")
        context["fleet"].init_server(init_model_path)
        context["fleet"].run_server()
        context['status'] = "terminal_pass"


class PslibNetwork(NetworkBase):
    def __init__(self, context):
293
        logger.info("Running PslibNetwork.")
C
Chengmo 已提交
294 295 296 297
        pass

    def build_network(self, context):
        context["model"] = {}
T
tangwei 已提交
298
        if len(context["env"]["phase"]) > 1:
C
Chengmo 已提交
299 300 301 302
            warnings.warn(
                "Cluster Train Only Support One Phase.",
                category=UserWarning,
                stacklevel=2)
T
tangwei 已提交
303
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
304 305 306 307 308 309 310 311 312
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        dataset_name = model_dict["dataset_name"]

        with fluid.program_guard(train_program, startup_program):
            with fluid.unique_name.guard():
                with fluid.scope_guard(scope):
                    context["model"][model_dict["name"]] = {}
T
tangwei 已提交
313 314
                    model_path = envs.os_path_adapter(
                        envs.workspace_adapter(model_dict["model"]))
T
tangwei 已提交
315 316
                    model = envs.lazy_instance_by_fliename(
                        model_path, "Model")(context["env"])
C
Chengmo 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
                    model._data_var = model.input_data(
                        dataset_name=model_dict["dataset_name"])
                    if envs.get_global_env("dataset." + dataset_name +
                                           ".type") == "DataLoader":
                        model._init_dataloader(is_infer=False)
                    model.net(model._data_var, False)
                    optimizer = model.optimizer()

                    optimizer = context["fleet"].distributed_optimizer(
                        optimizer)
                    optimizer.minimize([model._cost], [fluid.global_scope()])

                    context["model"][model_dict["name"]][
                        "main_program"] = train_program
                    context["model"][model_dict["name"]][
                        "startup_program"] = startup_program
                    context["model"][model_dict["name"]]["scope"] = scope
                    context["model"][model_dict["name"]]["model"] = model
                    context["model"][model_dict["name"]][
                        "default_main_program"] = train_program.clone()
337 338
                    context["model"][model_dict["name"]][
                        "compile_program"] = None
C
Chengmo 已提交
339 340 341 342 343

        if context["fleet"].is_server():
            self._server(context)
        else:
            context["dataset"] = {}
T
tangwei 已提交
344
            for dataset in context["env"]["dataset"]:
T
tangwei 已提交
345 346
                type = envs.get_global_env("dataset." + dataset["name"] +
                                           ".type")
347 348 349 350 351
                if type == "DataLoader":
                    data_loader = DataLoader(context)
                    data_loader.get_dataloader(context, dataset_name, context[
                        "model"][model_dict["name"]]["model"]._data_loader)
                elif type == "QueueDataset":
C
Chengmo 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364
                    dataset_class = QueueDataset(context)
                    context["dataset"][dataset[
                        "name"]] = dataset_class.create_dataset(
                            dataset["name"], context)
            context["status"] = "startup_pass"

    def _server(self, context):
        context["fleet"].run_server()
        context['status'] = "terminal_pass"


class CollectiveNetwork(NetworkBase):
    def __init__(self, context):
365
        logger.info("Running CollectiveNetwork.")
C
Chengmo 已提交
366 367 368 369
        pass

    def build_network(self, context):
        context["model"] = {}
T
tangwei 已提交
370
        if len(context["env"]["phase"]) > 1:
C
Chengmo 已提交
371 372 373 374
            warnings.warn(
                "Cluster Train Only Support One Phase.",
                category=UserWarning,
                stacklevel=2)
T
tangwei 已提交
375
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
376 377 378 379 380 381 382 383
        context["model"][model_dict["name"]] = {}
        dataset_name = model_dict["dataset_name"]

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        with fluid.program_guard(train_program, startup_program):
            with fluid.scope_guard(scope):
T
tangwei 已提交
384 385
                model_path = envs.os_path_adapter(
                    envs.workspace_adapter(model_dict["model"]))
T
tangwei 已提交
386

C
Chengmo 已提交
387
                model = envs.lazy_instance_by_fliename(model_path,
T
tangwei 已提交
388
                                                       "Model")(context["env"])
C
Chengmo 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
                model._data_var = model.input_data(
                    dataset_name=model_dict["dataset_name"])
                if envs.get_global_env("dataset." + dataset_name +
                                       ".type") == "DataLoader":
                    model._init_dataloader(is_infer=False)
                    data_loader = DataLoader(context)
                    data_loader.get_dataloader(context, dataset_name,
                                               model._data_loader)
                model.net(model._data_var, False)
                optimizer = model.optimizer()
                strategy = self._build_strategy(context)
                optimizer = context["fleet"].distributed_optimizer(optimizer,
                                                                   strategy)
                optimizer.minimize(model._cost)

                context["model"][model_dict["name"]]["main_program"] = context[
                    "fleet"].main_program
                context["model"][model_dict["name"]][
                    "startup_program"] = startup_program
                context["model"][model_dict["name"]]["scope"] = scope
                context["model"][model_dict["name"]]["model"] = model
                context["model"][model_dict["name"]][
                    "default_main_program"] = train_program
412
                context["model"][model_dict["name"]]["compiled_program"] = None
C
Chengmo 已提交
413 414

        context["dataset"] = {}
T
tangwei 已提交
415
        for dataset in context["env"]["dataset"]:
T
tangwei 已提交
416
            type = envs.get_global_env("dataset." + dataset["name"] + ".type")
417 418 419 420
            if type == "QueueDataset":
                raise ValueError(
                    "Collective don't support QueueDataset training, please use DataLoader."
                )
C
Chengmo 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433
                dataset_class = QueueDataset(context)
                context["dataset"][dataset[
                    "name"]] = dataset_class.create_dataset(dataset["name"],
                                                            context)
        context["status"] = "startup_pass"

    def _build_strategy(self, context):
        from paddle.fluid.incubate.fleet.collective import DistributedStrategy
        exec_strategy = fluid.ExecutionStrategy()
        strategy = DistributedStrategy()
        strategy.exec_strategy = exec_strategy
        context["strategy"] = strategy
        return strategy