single_trainer.py 14.3 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""

from __future__ import print_function
T
tangwei 已提交
19

T
tangwei 已提交
20
import time
T
tangwei 已提交
21
import logging
X
fix  
xjqbest 已提交
22
import os
T
tangwei 已提交
23 24
import paddle.fluid as fluid

25 26
from paddlerec.core.trainers.transpiler_trainer import TranspileTrainer
from paddlerec.core.utils import envs
X
fix  
xjqbest 已提交
27 28
from paddlerec.core.reader import SlotReader
from paddlerec.core.utils import dataloader_instance
T
tangwei 已提交
29 30 31 32 33 34

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


X
fix  
xjqbest 已提交
35
class SingleTrainer(TranspileTrainer):
X
fix  
xjqbest 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    def __init__(self, config=None):
        super(TranspileTrainer, self).__init__(config)
        self._env = self._config
        device = envs.get_global_env("device")
        if device == 'gpu':
            self._place = fluid.CUDAPlace(0)
        elif device == 'cpu':
            self._place = fluid.CPUPlace()
        self._exe = fluid.Executor(self._place)
        self.processor_register()
        self._model = {}
        self._dataset = {}
        envs.set_global_envs(self._config)
        envs.update_workspace()

T
tangwei 已提交
51 52 53
    def processor_register(self):
        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
C
chengmo 已提交
54
        self.regist_context_processor('startup_pass', self.startup)
X
fix  
xjqbest 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        self.regist_context_processor('train_pass', self.executor_train)
        self.regist_context_processor('terminal_pass', self.terminal)

    def instance(self, context):
        context['status'] = 'init_pass'

    def _get_dataset(self, dataset_name):
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots")
        dense_slots = envs.get_global_env(name + "dense_slots")
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        reader_class = envs.get_global_env("data_convertor")
        abs_dir = os.path.dirname(os.path.abspath(__file__))
        reader = os.path.join(abs_dir, '../utils', 'dataset_instance.py')

        if sparse_slots is None and dense_slots is None:
            pipe_cmd = "python {} {} {} {}".format(reader, reader_class, "fake", self._config_yaml)
X
fix  
xjqbest 已提交
73
        else:
X
fix  
xjqbest 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
            if sparse_slots is None:
                sparse_slots = "#"
            if dense_slots is None:
                dense_slots = "#"
            padding = envs.get_global_env(name +"padding", 0)
            pipe_cmd = "python {} {} {} {} {} {} {} {}".format(
                reader, "slot", "slot", self._config_yaml, "fake", \
                sparse_slots.replace(" ", "#"), dense_slots.replace(" ", "#"), str(padding))
        
        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_batch_size(envs.get_global_env(name + "batch_size"))
        dataset.set_pipe_command(pipe_cmd)
        train_data_path = envs.get_global_env(name + "data_path")
        file_list = [
            os.path.join(train_data_path, x)
            for x in os.listdir(train_data_path)
        ]
        dataset.set_filelist(file_list)
        for model_dict in self._env["executor"]:
            if model_dict["dataset_name"] == dataset_name:
                model = self._model[model_dict["name"]][3]
                inputs = model.get_inputs()
                dataset.set_use_var(inputs)
                break
        return dataset
T
tangwei 已提交
99

X
fix  
xjqbest 已提交
100
    def _get_dataloader(self, dataset_name, dataloader):
X
fix  
xjqbest 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots")
        dense_slots = envs.get_global_env(name + "dense_slots")
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        reader_class = envs.get_global_env("data_convertor")
        abs_dir = os.path.dirname(os.path.abspath(__file__))
        if sparse_slots is None and dense_slots is None:
            reader = dataloader_instance.dataloader_by_name(reader_class, dataset_name, self._config_yaml)
            reader_class = envs.lazy_instance_by_fliename(reader_class, "TrainReader")
            reader_ins = reader_class(self._config_yaml)
        else:
            reader = dataloader_instance.slotdataloader_by_name("", dataset_name, self._config_yaml)
            reader_ins = SlotReader(self._config_yaml)
        if hasattr(reader_ins, 'generate_batch_from_trainfiles'):
            dataloader.set_sample_list_generator(reader)
        else:
            dataloader.set_sample_generator(reader, batch_size)
        return dataloader
T
tangwei 已提交
120

T
tangwei 已提交
121

X
fix  
xjqbest 已提交
122 123 124 125 126 127 128 129 130 131 132
    def _create_dataset(self, dataset_name):
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots")
        dense_slots = envs.get_global_env(name + "dense_slots")
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        type_name = envs.get_global_env(name + "type")
        if envs.get_platform() != "LINUX":
            print("platform ", envs.get_platform(), " change reader to DataLoader")
            type_name = "DataLoader"
        padding = 0
T
tangwei 已提交
133

X
fix  
xjqbest 已提交
134 135 136 137 138 139 140 141
        if type_name == "DataLoader":
            return None#self._get_dataloader(dataset_name)
        else:
            return self._get_dataset(dataset_name)


    def init(self, context):
        for model_dict in self._env["executor"]:
X
fix  
xjqbest 已提交
142
            self._model[model_dict["name"]] = [None] * 5
X
fix  
xjqbest 已提交
143 144 145 146 147 148 149 150 151
            train_program = fluid.Program()
            startup_program = fluid.Program()
            scope = fluid.Scope()
            dataset_name = model_dict["dataset_name"]
            opt_name = envs.get_global_env("hyper_parameters.optimizer.class")
            opt_lr = envs.get_global_env("hyper_parameters.optimizer.learning_rate")
            opt_strategy = envs.get_global_env("hyper_parameters.optimizer.strategy")
            with fluid.program_guard(train_program, startup_program):
                with fluid.unique_name.guard():
X
fix  
xjqbest 已提交
152 153 154 155 156 157 158 159 160 161
                    with fluid.scope_guard(scope):
                        model_path = model_dict["model"].replace("{workspace}", envs.path_adapter(self._env["workspace"]))
                        model = envs.lazy_instance_by_fliename(model_path, "Model")(self._env)
                        model._data_var = model.input_data(dataset_name=model_dict["dataset_name"])
                        if envs.get_global_env("dataset." + dataset_name + ".type") == "DataLoader":
                            model._init_dataloader()
                            self._get_dataloader(dataset_name, model._data_loader)
                        model.net(model._data_var, is_infer=model_dict["is_infer"])
                        optimizer = model._build_optimizer(opt_name, opt_lr, opt_strategy)
                        optimizer.minimize(model._cost)
X
fix  
xjqbest 已提交
162 163 164 165
            self._model[model_dict["name"]][0] = train_program
            self._model[model_dict["name"]][1] = startup_program
            self._model[model_dict["name"]][2] = scope
            self._model[model_dict["name"]][3] = model
X
fix  
xjqbest 已提交
166
            self._model[model_dict["name"]][4] = train_program.clone()
X
fix  
xjqbest 已提交
167 168 169 170 171 172

        for dataset in self._env["dataset"]:
            if dataset["type"] != "DataLoader":
                self._dataset[dataset["name"]] = self._create_dataset(dataset["name"]) 

        context['status'] = 'startup_pass'
C
chengmo 已提交
173 174

    def startup(self, context):
X
fix  
xjqbest 已提交
175 176 177
        for model_dict in self._env["executor"]:
            with fluid.scope_guard(self._model[model_dict["name"]][2]):            
                self._exe.run(self._model[model_dict["name"]][1])
T
tangwei 已提交
178 179
        context['status'] = 'train_pass'

X
fix  
xjqbest 已提交
180 181 182 183
    def executor_train(self, context):
        epochs = int(self._env["epochs"])
        for j in range(epochs):
            for model_dict in self._env["executor"]:
X
fix  
xjqbest 已提交
184 185 186 187 188 189
                if j == 0:
                    with fluid.scope_guard(self._model[model_dict["name"]][2]):
                        train_prog = self._model[model_dict["name"]][0]
                        startup_prog = self._model[model_dict["name"]][1]
                        with fluid.program_guard(train_prog, startup_prog):
                            self.load(j)
X
fix  
xjqbest 已提交
190 191 192 193 194 195 196
                reader_name = model_dict["dataset_name"]
                name = "dataset." + reader_name + "."
                begin_time = time.time()
                if envs.get_global_env(name + "type") == "DataLoader":
                    self._executor_dataloader_train(model_dict)
                else:
                    self._executor_dataset_train(model_dict)
X
fix  
xjqbest 已提交
197
                with fluid.scope_guard(self._model[model_dict["name"]][2]):
X
fix  
xjqbest 已提交
198
                    train_prog = self._model[model_dict["name"]][4]
X
fix  
xjqbest 已提交
199 200 201
                    startup_prog = self._model[model_dict["name"]][1]
                    with fluid.program_guard(train_prog, startup_prog):
                        self.save(j)
X
fix  
xjqbest 已提交
202 203 204 205
                end_time = time.time()
                seconds = end_time - begin_time
            print("epoch {} done, time elasped: {}".format(j, seconds))
        context['status'] = "terminal_pass"
X
fix  
xjqbest 已提交
206

X
fix  
xjqbest 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    def _executor_dataset_train(self, model_dict):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = self._model[model_name][3]
        fetch_vars = []
        fetch_alias = []
        fetch_period = 20
        metrics = model_class.get_metrics()
        if metrics:
            fetch_vars = metrics.values()
            fetch_alias = metrics.keys()
        scope = self._model[model_name][2]
        program = self._model[model_name][0]
        reader = self._dataset[reader_name]
        with fluid.scope_guard(scope):
            self._exe.train_from_dataset(
                program=program,
                dataset=reader,
                fetch_list=fetch_vars,
                fetch_info=fetch_alias,
                print_period=fetch_period)
X
fix  
xjqbest 已提交
228

X
fix  
xjqbest 已提交
229 230 231 232
    def _executor_dataloader_train(self, model_dict):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = self._model[model_name][3]
X
fix  
xjqbest 已提交
233 234 235
        program = self._model[model_name][0].clone()
        program = fluid.compiler.CompiledProgram(
            program).with_data_parallel(loss_name=model_class.get_avg_cost().name)
X
fix  
xjqbest 已提交
236 237 238 239 240 241 242
        fetch_vars = []
        fetch_alias = []
        fetch_period = 20
        metrics = model_class.get_metrics()
        if metrics:
            fetch_vars = metrics.values()
            fetch_alias = metrics.keys()
X
test  
xjqbest 已提交
243 244
        metrics_varnames = []
        metrics_format = []
X
fix  
xjqbest 已提交
245 246
        fetch_period = 20
        #metrics_format.append("{}: {{}}".format("epoch"))
X
test  
xjqbest 已提交
247
        metrics_format.append("{}: {{}}".format("batch"))
X
fix  
xjqbest 已提交
248
        for name, var in model_class.get_metrics().items():
X
test  
xjqbest 已提交
249 250 251 252
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))
        metrics_format = ", ".join(metrics_format)

X
fix  
xjqbest 已提交
253 254 255 256 257
        reader = self._model[model_name][3]._data_loader
        reader.start()
        batch_id = 0
        scope = self._model[model_name][2]
        with fluid.scope_guard(scope):
T
tangwei 已提交
258 259
            try:
                while True:
T
tangwei 已提交
260 261
                    metrics_rets = self._exe.run(program=program,
                                                 fetch_list=metrics_varnames)
X
fix  
xjqbest 已提交
262
                    metrics = [batch_id]#[epoch, batch_id]
T
tangwei 已提交
263
                    metrics.extend(metrics_rets)
T
tangwei 已提交
264

X
fix  
xjqbest 已提交
265
                    if batch_id % fetch_period == 0 and batch_id != 0:
T
tangwei 已提交
266
                        print(metrics_format.format(*metrics))
T
tangwei 已提交
267 268 269
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()
T
tangwei 已提交
270 271 272

    def terminal(self, context):
        context['is_exit'] = True
X
fix  
xjqbest 已提交
273

X
fix  
xjqbest 已提交
274 275 276 277 278 279 280 281 282 283
    def load(self, is_fleet=False):
        dirname = envs.get_global_env("epoch.init_model_path", None)
        if dirname is None:
            return
        dirname = os.path.join(dirname, str(epoch_id))
        if is_fleet:
            fleet.load_persistables(self._exe, dirname)
        else:
            fluid.io.load_persistables(self._exe, dirname)

X
fix  
xjqbest 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    def save(self, epoch_id, is_fleet=False):
        def need_save(epoch_id, epoch_interval, is_last=False):
            if is_last:
                return True
            if epoch_id == -1:
                return False

            return epoch_id % epoch_interval == 0

        def save_inference_model():
            save_interval = envs.get_global_env("epoch.save_inference_interval", -1)
            if not need_save(epoch_id, save_interval, False):
                return
            feed_varnames = envs.get_global_env("epoch.save_inference_feed_varnames", None)
            fetch_varnames = envs.get_global_env("epoch.save_inference_fetch_varnames", None)
            if feed_varnames is None or fetch_varnames is None:
                return
            fetch_vars = [
                fluid.default_main_program().global_block().vars[varname]
                for varname in fetch_varnames
            ]
            dirname = envs.get_global_env("epoch.save_inference_path", None)

            assert dirname is not None
            dirname = os.path.join(dirname, str(epoch_id))

            if is_fleet:
                fleet.save_inference_model(self._exe, dirname, feed_varnames,
                                           fetch_vars)
            else:
                fluid.io.save_inference_model(dirname, feed_varnames,
                                              fetch_vars, self._exe)

        def save_persistables():
X
fix  
xjqbest 已提交
318
            save_interval = int(envs.get_global_env("epoch.save_checkpoint_interval", -1))
X
fix  
xjqbest 已提交
319 320 321 322 323 324 325 326 327 328 329 330
            if not need_save(epoch_id, save_interval, False):
                return
            dirname = envs.get_global_env("epoch.save_checkpoint_path", None)
            assert dirname is not None
            dirname = os.path.join(dirname, str(epoch_id))
            if is_fleet:
                fleet.save_persistables(self._exe, dirname)
            else:
                fluid.io.save_persistables(self._exe, dirname)

        save_persistables()
        save_inference_model()