single_trainer.py 12.4 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""

from __future__ import print_function
T
tangwei 已提交
19

T
tangwei 已提交
20
import time
T
tangwei 已提交
21
import logging
X
fix  
xjqbest 已提交
22
import os
T
tangwei 已提交
23 24
import paddle.fluid as fluid

25 26
from paddlerec.core.trainers.transpiler_trainer import TranspileTrainer
from paddlerec.core.utils import envs
X
fix  
xjqbest 已提交
27 28
from paddlerec.core.reader import SlotReader
from paddlerec.core.utils import dataloader_instance
T
tangwei 已提交
29 30 31 32 33 34

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


X
fix  
xjqbest 已提交
35
class SingleTrainer(TranspileTrainer):
X
fix  
xjqbest 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    def __init__(self, config=None):
        super(TranspileTrainer, self).__init__(config)
        self._env = self._config
        device = envs.get_global_env("device")
        if device == 'gpu':
            self._place = fluid.CUDAPlace(0)
        elif device == 'cpu':
            self._place = fluid.CPUPlace()
        self._exe = fluid.Executor(self._place)
        self.processor_register()
        self._model = {}
        self._dataset = {}
        envs.set_global_envs(self._config)
        envs.update_workspace()

T
tangwei 已提交
51 52 53
    def processor_register(self):
        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
C
chengmo 已提交
54
        self.regist_context_processor('startup_pass', self.startup)
X
fix  
xjqbest 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        self.regist_context_processor('train_pass', self.executor_train)
        self.regist_context_processor('terminal_pass', self.terminal)

    def instance(self, context):
        context['status'] = 'init_pass'

    def _get_dataset(self, dataset_name):
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots")
        dense_slots = envs.get_global_env(name + "dense_slots")
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        reader_class = envs.get_global_env("data_convertor")
        abs_dir = os.path.dirname(os.path.abspath(__file__))
        reader = os.path.join(abs_dir, '../utils', 'dataset_instance.py')

        if sparse_slots is None and dense_slots is None:
            pipe_cmd = "python {} {} {} {}".format(reader, reader_class, "fake", self._config_yaml)
T
tangwei 已提交
73

X
fix  
xjqbest 已提交
74
        else:
X
fix  
xjqbest 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
            if sparse_slots is None:
                sparse_slots = "#"
            if dense_slots is None:
                dense_slots = "#"
            padding = envs.get_global_env(name +"padding", 0)
            pipe_cmd = "python {} {} {} {} {} {} {} {}".format(
                reader, "slot", "slot", self._config_yaml, "fake", \
                sparse_slots.replace(" ", "#"), dense_slots.replace(" ", "#"), str(padding))
        
        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_batch_size(envs.get_global_env(name + "batch_size"))
        dataset.set_pipe_command(pipe_cmd)
        train_data_path = envs.get_global_env(name + "data_path")
        file_list = [
            os.path.join(train_data_path, x)
            for x in os.listdir(train_data_path)
        ]
        dataset.set_filelist(file_list)
        for model_dict in self._env["executor"]:
            if model_dict["dataset_name"] == dataset_name:
                model = self._model[model_dict["name"]][3]
                inputs = model.get_inputs()
                dataset.set_use_var(inputs)
                break
        return dataset
T
tangwei 已提交
100

X
fix  
xjqbest 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    def _get_dataloader(self, dataset_name):
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots")
        dense_slots = envs.get_global_env(name + "dense_slots")
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        reader_class = envs.get_global_env("data_convertor")
        abs_dir = os.path.dirname(os.path.abspath(__file__))
        #reader = os.path.join(abs_dir, '../utils', 'dataset_instance.py')        
        if sparse_slots is None and dense_slots is None:
            #reader_class = envs.get_global_env("class")
            reader = dataloader_instance.dataloader_by_name(reader_class, dataset_name, self._config_yaml)
            reader_class = envs.lazy_instance_by_fliename(reader_class, "TrainReader")
            reader_ins = reader_class(self._config_yaml)
        else:
            reader = dataloader_instance.slotdataloader_by_name("", dataset_name, self._config_yaml)
            reader_ins = SlotReader(self._config_yaml)
        if hasattr(reader_ins, 'generate_batch_from_trainfiles'):
            dataloader.set_sample_list_generator(reader)
        else:
            dataloader.set_sample_generator(reader, batch_size)
        return dataloader
T
tangwei 已提交
123

T
tangwei 已提交
124

X
fix  
xjqbest 已提交
125 126 127 128 129 130 131 132 133 134 135
    def _create_dataset(self, dataset_name):
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots")
        dense_slots = envs.get_global_env(name + "dense_slots")
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        type_name = envs.get_global_env(name + "type")
        if envs.get_platform() != "LINUX":
            print("platform ", envs.get_platform(), " change reader to DataLoader")
            type_name = "DataLoader"
        padding = 0
T
tangwei 已提交
136

X
fix  
xjqbest 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        if type_name == "DataLoader":
            return None#self._get_dataloader(dataset_name)
        else:
            return self._get_dataset(dataset_name)


        reader = envs.path_adapter("paddlerec.core.utils") + "/dataset_instance.py"
        pipe_cmd = "python {} {} {} {} {} {} {} {}".format(
            reader, "slot", "slot", self._config_yaml, "fake", \
            sparse_slots.replace(" ", "#"), dense_slots.replace(" ", "#"), str(padding))

        if type_name == "QueueDataset":
            dataset = fluid.DatasetFactory().create_dataset()
            dataset.set_batch_size(envs.get_global_env(name + "batch_size"))
            dataset.set_pipe_command(pipe_cmd)
            train_data_path = envs.get_global_env(name + "data_path")
            file_list = [
                os.path.join(train_data_path, x)
                for x in os.listdir(train_data_path)
            ]
            dataset.set_filelist(file_list)
            for model_dict in self._env["executor"]:
                if model_dict["dataset_name"] == dataset_name:
                    model = self._model[model_dict["name"]][3]
                    inputs = model.get_inputs()
                    dataset.set_use_var(inputs)
                    break
C
chengmo 已提交
164
        else:
X
fix  
xjqbest 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            pass

        return dataset

    def init(self, context):
        for model_dict in self._env["executor"]:
            self._model[model_dict["name"]] = [None] * 4
            train_program = fluid.Program()
            startup_program = fluid.Program()
            scope = fluid.Scope()
            dataset_name = model_dict["dataset_name"]
            opt_name = envs.get_global_env("hyper_parameters.optimizer.class")
            opt_lr = envs.get_global_env("hyper_parameters.optimizer.learning_rate")
            opt_strategy = envs.get_global_env("hyper_parameters.optimizer.strategy")
            with fluid.program_guard(train_program, startup_program):
                with fluid.unique_name.guard():
                    model_path = model_dict["model"].replace("{workspace}", envs.path_adapter(self._env["workspace"]))
                    model = envs.lazy_instance_by_fliename(model_path, "Model")(self._env)
                    model._data_var = model.input_data(dataset_name=model_dict["dataset_name"])
                    #model._init_slots(name=model_dict["name"])
                    if envs.get_global_env("dataset." + dataset_name + ".type") == "DataLoader":
                        model._init_dataloader()
                    model.net(model._data_var)
                    optimizer = model._build_optimizer(opt_name, opt_lr, opt_strategy)
                    optimizer.minimize(model._cost)
            self._model[model_dict["name"]][0] = train_program
            self._model[model_dict["name"]][1] = startup_program
            self._model[model_dict["name"]][2] = scope
            self._model[model_dict["name"]][3] = model

        for dataset in self._env["dataset"]:
            if dataset["type"] != "DataLoader":
                self._dataset[dataset["name"]] = self._create_dataset(dataset["name"]) 

        context['status'] = 'startup_pass'
C
chengmo 已提交
200 201

    def startup(self, context):
X
fix  
xjqbest 已提交
202 203 204
        for model_dict in self._env["executor"]:
            with fluid.scope_guard(self._model[model_dict["name"]][2]):            
                self._exe.run(self._model[model_dict["name"]][1])
T
tangwei 已提交
205 206
        context['status'] = 'train_pass'

X
fix  
xjqbest 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    def executor_train(self, context):
        epochs = int(self._env["epochs"])
        for j in range(epochs):
            for model_dict in self._env["executor"]:
                reader_name = model_dict["dataset_name"]
                name = "dataset." + reader_name + "."
                begin_time = time.time()
                if envs.get_global_env(name + "type") == "DataLoader":
                    self._executor_dataloader_train(model_dict)
                else:
                    self._executor_dataset_train(model_dict)
                end_time = time.time()
                seconds = end_time - begin_time
            print("epoch {} done, time elasped: {}".format(j, seconds))
        context['status'] = "terminal_pass"
X
fix  
xjqbest 已提交
222

X
fix  
xjqbest 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    def _executor_dataset_train(self, model_dict):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = self._model[model_name][3]
        fetch_vars = []
        fetch_alias = []
        fetch_period = 20
        metrics = model_class.get_metrics()
        if metrics:
            fetch_vars = metrics.values()
            fetch_alias = metrics.keys()
        scope = self._model[model_name][2]
        program = self._model[model_name][0]
        reader = self._dataset[reader_name]
        with fluid.scope_guard(scope):
            self._exe.train_from_dataset(
                program=program,
                dataset=reader,
                fetch_list=fetch_vars,
                fetch_info=fetch_alias,
                print_period=fetch_period)
X
fix  
xjqbest 已提交
244

X
fix  
xjqbest 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258

    def _executor_dataloader_train(self, model_dict):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = self._model[model_name][3]
        self._model[model_name][0] = fluid.compiler.CompiledProgram(
            self._model[model_name][0]).with_data_parallel(loss_name=model_class.get_avg_cost().name)
        fetch_vars = []
        fetch_alias = []
        fetch_period = 20
        metrics = model_class.get_metrics()
        if metrics:
            fetch_vars = metrics.values()
            fetch_alias = metrics.keys()
X
test  
xjqbest 已提交
259 260 261 262
        metrics_varnames = []
        metrics_format = []
        metrics_format.append("{}: {{}}".format("epoch"))
        metrics_format.append("{}: {{}}".format("batch"))
X
fix  
xjqbest 已提交
263
        for name, var in model_class.get_metrics().items():
X
test  
xjqbest 已提交
264 265 266 267
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))
        metrics_format = ", ".join(metrics_format)

X
fix  
xjqbest 已提交
268 269 270 271 272 273 274
        reader = self._model[model_name][3]._data_loader
        reader.start()
        batch_id = 0
        scope = self._model[model_name][2]
        program = self._model[model_name][0]
        #print(metrics_varnames)
        with fluid.scope_guard(scope):
T
tangwei 已提交
275 276
            try:
                while True:
T
tangwei 已提交
277 278
                    metrics_rets = self._exe.run(program=program,
                                                 fetch_list=metrics_varnames)
T
tangwei 已提交
279
                    metrics = [epoch, batch_id]
T
tangwei 已提交
280
                    metrics.extend(metrics_rets)
T
tangwei 已提交
281

M
malin10 已提交
282
                    if batch_id % self.fetch_period == 0 and batch_id != 0:
T
tangwei 已提交
283
                        print(metrics_format.format(*metrics))
T
tangwei 已提交
284 285 286
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()
T
tangwei 已提交
287 288 289

    def terminal(self, context):
        context['is_exit'] = True