runner.py 25.3 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import time
C
Chengmo 已提交
19
import warnings
C
Chengmo 已提交
20
import numpy as np
C
Chengmo 已提交
21
import paddle.fluid as fluid
C
Chengmo 已提交
22

C
Chengmo 已提交
23
from paddlerec.core.utils import envs
M
update  
malin10 已提交
24
from paddlerec.core.metric import Metric
C
Chengmo 已提交
25 26 27 28 29 30

__all__ = [
    "RunnerBase", "SingleRunner", "PSRunner", "CollectiveRunner", "PslibRunner"
]


C
Chengmo 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
def as_numpy(tensor):
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
    if isinstance(tensor, fluid.core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, fluid.core.LoDTensor)
    lod = tensor.lod()
    # (todo) need print lod or return it for user
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None


C
Chengmo 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79
class RunnerBase(object):
    """R
    """

    def __init__(self, context):
        pass

    def exuctor(self, context):
        pass

    def _run(self, context, model_dict):
        reader_name = model_dict["dataset_name"]
        name = "dataset." + reader_name + "."
T
tangwei 已提交
80

C
Chengmo 已提交
81
        if envs.get_global_env(name + "type") == "DataLoader":
M
update  
malin10 已提交
82
            return self._executor_dataloader_train(model_dict, context)
C
Chengmo 已提交
83 84
        else:
            self._executor_dataset_train(model_dict, context)
M
update  
malin10 已提交
85
            return None
C
Chengmo 已提交
86 87 88 89 90

    def _executor_dataset_train(self, model_dict, context):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
91

C
Chengmo 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        fetch_vars = []
        fetch_alias = []
        fetch_period = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".print_interval", 20))
        scope = context["model"][model_name]["scope"]
        program = context["model"][model_name]["main_program"]
        reader = context["dataset"][reader_name]

        with fluid.scope_guard(scope):
            if context["is_infer"]:
                metrics = model_class.get_infer_results()
                if metrics:
                    fetch_vars = metrics.values()
                    fetch_alias = metrics.keys()
                context["exe"].infer_from_dataset(
                    program=program,
                    dataset=reader,
                    fetch_list=fetch_vars,
                    fetch_info=fetch_alias,
X
xjqbest 已提交
112 113
                    print_period=fetch_period,
                    debug=envs.get_global_env("debug", False))
C
Chengmo 已提交
114 115 116 117 118 119 120 121 122 123 124
            else:
                metrics = model_class.get_metrics()
                if metrics:
                    fetch_vars = metrics.values()
                    fetch_alias = metrics.keys()
                with fluid.scope_guard(scope):
                    context["exe"].train_from_dataset(
                        program=program,
                        dataset=reader,
                        fetch_list=fetch_vars,
                        fetch_info=fetch_alias,
X
xjqbest 已提交
125 126
                        print_period=fetch_period,
                        debug=envs.get_global_env("debug", False))
C
Chengmo 已提交
127 128 129 130

    def _executor_dataloader_train(self, model_dict, context):
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
131
        program = self._get_dataloader_program(model_dict, context)
C
Chengmo 已提交
132 133 134 135 136 137 138 139 140 141 142

        fetch_period = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".print_interval", 20))
        if context["is_infer"]:
            metrics = model_class.get_infer_results()
        else:
            metrics = model_class.get_metrics()

        metrics_varnames = []
        metrics_format = []
M
update  
malin10 已提交
143
        metrics_names = ["total_batch"]
C
Chengmo 已提交
144 145
        metrics_format.append("{}: {{}}".format("batch"))
        for name, var in metrics.items():
M
update  
malin10 已提交
146
            metrics_names.append(name)
C
Chengmo 已提交
147 148 149 150 151 152 153 154
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))
        metrics_format = ", ".join(metrics_format)

        reader = context["model"][model_dict["name"]]["model"]._data_loader
        reader.start()
        batch_id = 0
        scope = context["model"][model_name]["scope"]
M
update  
malin10 已提交
155
        result = None
C
Chengmo 已提交
156 157 158
        with fluid.scope_guard(scope):
            try:
                while True:
C
Chengmo 已提交
159 160 161 162
                    metrics_tensors = context["exe"].run(
                        program=program,
                        fetch_list=metrics_varnames,
                        return_numpy=False)
C
Chengmo 已提交
163
                    metrics = [batch_id]
C
Chengmo 已提交
164 165 166 167 168

                    metrics_rets = [
                        as_numpy(metrics_tensor)
                        for metrics_tensor in metrics_tensors
                    ]
C
Chengmo 已提交
169 170 171 172 173 174 175 176
                    metrics.extend(metrics_rets)

                    if batch_id % fetch_period == 0 and batch_id != 0:
                        print(metrics_format.format(*metrics))
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()

M
update  
malin10 已提交
177
        if batch_id > 0:
M
update  
malin10 已提交
178 179
            result = dict(zip(metrics_names, metrics))
        return result
M
update  
malin10 已提交
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    def _get_dataloader_program(self, model_dict, context):
        model_name = model_dict["name"]
        if context["model"][model_name]["compiled_program"] == None:
            if context["is_infer"]:
                program = context["model"][model_name]["main_program"]
            elif context["is_fleet"]:
                if context["fleet_mode"].upper() == "PS":
                    program = self._get_ps_program(model_dict, context)
                elif context["fleet_mode"].upper() == "COLLECTIVE":
                    program = context["model"][model_name]["main_program"]
            elif not context["is_fleet"]:
                if context["device"].upper() == "CPU":
                    program = self._get_single_cpu_program(model_dict, context)
                elif context["device"].upper() == "GPU":
                    program = self._get_single_gpu_program(model_dict, context)
            context["model"][model_name]["compiled_program"] = program
        return context["model"][model_name]["compiled_program"]

C
Chengmo 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212
    def _get_strategy(self, model_dict, context):
        _build_strategy = fluid.BuildStrategy()
        _exe_strategy = fluid.ExecutionStrategy()

        # 0: kCoeffNumDevice; 1: One; 2: Customized
        _gradient_scale_strategy = model_dict.get("gradient_scale_strategy", 0)
        if _gradient_scale_strategy == 0:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.CoeffNumDevice
        elif _gradient_scale_strategy == 1:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.One
        elif _gradient_scale_strategy == 2:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
        else:
            raise ValueError(
T
tangwei 已提交
213
                "Unsupported config. gradient_scale_strategy must be one of [0, 1, 2]."
C
Chengmo 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            )
        _build_strategy.gradient_scale_strategy = gradient_scale_strategy

        if "thread_num" in model_dict and model_dict["thread_num"] > 1:
            _build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
            _exe_strategy.num_threads = model_dict["thread_num"]
            os.environ['CPU_NUM'] = str(_exe_strategy.num_threads)

        return _exe_strategy, _build_strategy

    def _get_single_gpu_program(self, model_dict, context):
        model_name = model_dict["name"]
        return context["model"][model_name]["main_program"].clone()

    def _get_single_cpu_program(self, model_dict, context):
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
        program = context["model"][model_name]["main_program"].clone()
        _exe_strategy, _build_strategy = self._get_strategy(model_dict,
                                                            context)
M
update  
malin10 已提交
234

C
Chengmo 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        program = fluid.compiler.CompiledProgram(program).with_data_parallel(
            loss_name=model_class.get_avg_cost().name,
            build_strategy=_build_strategy,
            exec_strategy=_exe_strategy)
        return program

    def _get_ps_program(self, model_dict, context):
        model_name = model_dict["name"]
        model_class = context["model"][model_dict["name"]]["model"]
        program = context["model"][model_name]["main_program"].clone()

        _build_strategy = context["strategy"].get_build_strategy()
        _exe_strategy = context["strategy"].get_execute_strategy()

        if "thread_num" in model_dict and model_dict["thread_num"] > 1:
            _build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
            _exe_strategy.num_threads = model_dict["thread_num"]
            os.environ['CPU_NUM'] = str(_exe_strategy.num_threads)

        _gradient_scale_strategy = model_dict.get("gradient_scale_strategy", 0)
        if _gradient_scale_strategy == 0:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.CoeffNumDevice
        elif _gradient_scale_strategy == 1:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.One
        elif _gradient_scale_strategy == 2:
            gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
        else:
            raise ValueError(
                "Unsurpported config. gradient_scale_strategy must be one of [0, 1, 2]."
            )
        _build_strategy.gradient_scale_strategy = gradient_scale_strategy

        program = fluid.compiler.CompiledProgram(program).with_data_parallel(
            loss_name=model_class.get_avg_cost().name,
            build_strategy=_build_strategy,
            exec_strategy=_exe_strategy)
        return program

    def save(self, epoch_id, context, is_fleet=False):
        def need_save(epoch_id, epoch_interval, is_last=False):
275 276 277 278 279
            name = "runner." + context["runner_name"] + "."
            total_epoch = int(envs.get_global_env(name + "epochs", 1))
            if epoch_id + 1 == total_epoch:
                is_last = True

C
Chengmo 已提交
280 281 282 283 284
            if is_last:
                return True
            if epoch_id == -1:
                return False

285
            return (epoch_id + 1) % epoch_interval == 0
C
Chengmo 已提交
286 287

        def save_inference_model():
C
Chengmo 已提交
288
            # get global env
C
Chengmo 已提交
289 290 291 292 293 294 295 296 297 298
            name = "runner." + context["runner_name"] + "."
            save_interval = int(
                envs.get_global_env(name + "save_inference_interval", -1))
            if not need_save(epoch_id, save_interval, False):
                return
            feed_varnames = envs.get_global_env(
                name + "save_inference_feed_varnames", [])
            fetch_varnames = envs.get_global_env(
                name + "save_inference_fetch_varnames", [])
            if feed_varnames is None or fetch_varnames is None or feed_varnames == "" or fetch_varnames == "" or \
C
Chengmo 已提交
299
                    len(feed_varnames) == 0 or len(fetch_varnames) == 0:
C
Chengmo 已提交
300
                return
C
Chengmo 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

            # check feed var exist
            for var_name in feed_varnames:
                if var_name not in fluid.default_main_program().global_block(
                ).vars:
                    raise ValueError(
                        "Feed variable: {} not in default_main_program, global block has follow vars: {}".
                        format(var_name,
                               fluid.default_main_program().global_block()
                               .vars.keys()))

            # check fetch var exist
            fetch_vars = []
            for var_name in fetch_varnames:
                if var_name not in fluid.default_main_program().global_block(
                ).vars:
                    raise ValueError(
                        "Fetch variable: {} not in default_main_program, global block has follow vars: {}".
                        format(var_name,
                               fluid.default_main_program().global_block()
                               .vars.keys()))
                else:
                    fetch_vars.append(fluid.default_main_program()
                                      .global_block().vars[var_name])

C
Chengmo 已提交
326 327 328 329 330 331
            dirname = envs.get_global_env(name + "save_inference_path", None)

            assert dirname is not None
            dirname = os.path.join(dirname, str(epoch_id))

            if is_fleet:
C
Chengmo 已提交
332 333 334 335 336 337 338
                warnings.warn(
                    "Save inference model in cluster training is not recommended! Using save checkpoint instead.",
                    category=UserWarning,
                    stacklevel=2)
                if context["fleet"].worker_index() == 0:
                    context["fleet"].save_inference_model(
                        context["exe"], dirname, feed_varnames, fetch_vars)
C
Chengmo 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
            else:
                fluid.io.save_inference_model(dirname, feed_varnames,
                                              fetch_vars, context["exe"])

        def save_persistables():
            name = "runner." + context["runner_name"] + "."
            save_interval = int(
                envs.get_global_env(name + "save_checkpoint_interval", -1))
            if not need_save(epoch_id, save_interval, False):
                return
            dirname = envs.get_global_env(name + "save_checkpoint_path", None)
            if dirname is None or dirname == "":
                return
            dirname = os.path.join(dirname, str(epoch_id))
            if is_fleet:
C
Chengmo 已提交
354 355
                if context["fleet"].worker_index() == 0:
                    context["fleet"].save_persistables(context["exe"], dirname)
C
Chengmo 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
            else:
                fluid.io.save_persistables(context["exe"], dirname)

        save_persistables()
        save_inference_model()


class SingleRunner(RunnerBase):
    """R
    """

    def __init__(self, context):
        print("Running SingleRunner.")
        pass

    def run(self, context):
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
        for epoch in range(epochs):
T
tangwei 已提交
376
            for model_dict in context["phases"]:
M
update  
malin10 已提交
377
                model_class = context["model"][model_dict["name"]]["model"]
M
bug fix  
malin10 已提交
378
                metrics = model_class._metrics
M
update  
malin10 已提交
379

C
Chengmo 已提交
380
                begin_time = time.time()
M
update  
malin10 已提交
381
                result = self._run(context, model_dict)
C
Chengmo 已提交
382 383
                end_time = time.time()
                seconds = end_time - begin_time
M
update  
malin10 已提交
384
                message = "epoch {} done, use time: {}".format(epoch, seconds)
M
update  
malin10 已提交
385 386 387
                metrics_result = []
                for key in metrics:
                    if isinstance(metrics[key], Metric):
M
bug fix  
malin10 已提交
388
                        _str = metrics[key].calc_global_metrics(
M
update  
malin10 已提交
389 390
                            None,
                            context["model"][model_dict["name"]]["scope"])
M
malin10 已提交
391
                        metrics_result.append(_str)
M
update  
malin10 已提交
392 393
                    elif result is not None:
                        _str = "{}={}".format(key, result[key])
M
malin10 已提交
394
                        metrics_result.append(_str)
M
update  
malin10 已提交
395 396
                if len(metrics_result) > 0:
                    message += ", global metrics: " + ", ".join(metrics_result)
M
update  
malin10 已提交
397
                print(message)
M
update  
malin10 已提交
398

C
Chengmo 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
                with fluid.scope_guard(context["model"][model_dict["name"]][
                        "scope"]):
                    train_prog = context["model"][model_dict["name"]][
                        "default_main_program"]
                    startup_prog = context["model"][model_dict["name"]][
                        "startup_program"]
                    with fluid.program_guard(train_prog, startup_prog):
                        self.save(epoch, context)
        context["status"] = "terminal_pass"


class PSRunner(RunnerBase):
    def __init__(self, context):
        print("Running PSRunner.")
        pass

    def run(self, context):
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
T
tangwei 已提交
419
        model_dict = context["env"]["phase"][0]
M
update  
malin10 已提交
420 421
        model_class = context["model"][model_dict["name"]]["model"]
        metrics = model_class._metrics
C
Chengmo 已提交
422 423
        for epoch in range(epochs):
            begin_time = time.time()
M
update  
malin10 已提交
424
            result = self._run(context, model_dict)
C
Chengmo 已提交
425 426
            end_time = time.time()
            seconds = end_time - begin_time
M
update  
malin10 已提交
427
            message = "epoch {} done, use time: {}".format(epoch, seconds)
M
update  
malin10 已提交
428 429 430 431 432 433 434 435

            # TODO, wait for PaddleCloudRoleMaker supports gloo
            from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
            if context["fleet"] is not None and isinstance(context["fleet"],
                                                           GeneralRoleMaker):
                metrics_result = []
                for key in metrics:
                    if isinstance(metrics[key], Metric):
M
bug fix  
malin10 已提交
436
                        _str = metrics[key].calc_global_metrics(
M
update  
malin10 已提交
437 438
                            context["fleet"],
                            context["model"][model_dict["name"]]["scope"])
M
malin10 已提交
439
                        metrics_result.append(_str)
M
update  
malin10 已提交
440 441
                    elif result is not None:
                        _str = "{}={}".format(key, result[key])
M
malin10 已提交
442
                        metrics_result.append(_str)
M
update  
malin10 已提交
443 444
                if len(metrics_result) > 0:
                    message += ", global metrics: " + ", ".join(metrics_result)
M
update  
malin10 已提交
445
            print(message)
C
Chengmo 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
            with fluid.scope_guard(context["model"][model_dict["name"]][
                    "scope"]):
                train_prog = context["model"][model_dict["name"]][
                    "main_program"]
                startup_prog = context["model"][model_dict["name"]][
                    "startup_program"]
                with fluid.program_guard(train_prog, startup_prog):
                    self.save(epoch, context, True)
        context["status"] = "terminal_pass"


class CollectiveRunner(RunnerBase):
    def __init__(self, context):
        print("Running CollectiveRunner.")
        pass

    def run(self, context):
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
T
tangwei 已提交
466
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        for epoch in range(epochs):
            begin_time = time.time()
            self._run(context, model_dict)
            end_time = time.time()
            seconds = end_time - begin_time
            print("epoch {} done, use time: {}".format(epoch, seconds))
            with fluid.scope_guard(context["model"][model_dict["name"]][
                    "scope"]):
                train_prog = context["model"][model_dict["name"]][
                    "default_main_program"]
                startup_prog = context["model"][model_dict["name"]][
                    "startup_program"]
                with fluid.program_guard(train_prog, startup_prog):
                    self.save(epoch, context, True)
        context["status"] = "terminal_pass"


class PslibRunner(RunnerBase):
    def __init__(self, context):
        print("Running PSRunner.")
        pass

    def run(self, context):
        context["fleet"].init_worker()
T
tangwei 已提交
491
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
        epochs = int(
            envs.get_global_env("runner." + context["runner_name"] +
                                ".epochs"))
        for epoch in range(epochs):
            begin_time = time.time()
            self._run(context, model_dict)
            end_time = time.time()
            seconds = end_time - begin_time
            print("epoch {} done, use time: {}".format(epoch, seconds))
        """
        # online Training Can do more, As shown below:

        begin_day = datetime.datetime.strptime("begin_day_d", '%Y%m%d')
        days = int(
            envs.get_global_env("runner." + context["runner_name"] + ".days"))
        for day in range(days):
            for hour in range(24):
                day = begin_day + datetime.timedelta(days=day, hours=hour)
                day_s = day.strftime('%Y%m%d/%H')

T
tangwei 已提交
512
                for dataset in envs.get_global_env("dataset"):
C
Chengmo 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
                    if dataset["type"] != "DataLoader":
                        name = dataset["name"]
                        train_data_path = envs.get_global_env(name +
                                                              "data_path")
                        train_data_path = os.path.join(train_data_path, day_s)

                        file_list = [
                            os.path.join(train_data_path, x)
                            for x in os.listdir(train_data_path)
                        ]
                        context["dataset"][name].set_filelist(file_list)

                for epoch in range(epochs):
                    begin_time = time.time()
                    self._run(context, model_dict)
                    end_time = time.time()
                    seconds = end_time - begin_time
                    print("epoch {} done, use time: {}".format(epoch, seconds))
                    with fluid.scope_guard(context["model"][model_dict["name"]]
                                           ["scope"]):
                        train_prog = context["model"][model_dict["name"]][
                            "default_main_program"]
                        startup_prog = context["model"][model_dict["name"]][
                            "startup_program"]
                        with fluid.program_guard(train_prog, startup_prog):
                            self.save(epoch, context, True)

        """
        context["status"] = "terminal_pass"
542 543 544 545 546 547 548 549 550 551 552 553


class SingleInferRunner(RunnerBase):
    def __init__(self, context):
        print("Running SingleInferRunner.")
        pass

    def run(self, context):
        self._dir_check(context)

        for index, epoch_name in enumerate(self.epoch_model_name_list):
            for model_dict in context["phases"]:
M
update  
malin10 已提交
554 555
                model_class = context["model"][model_dict["name"]]["model"]
                metrics = model_class._infer_results
556 557 558
                self._load(context, model_dict,
                           self.epoch_model_path_list[index])
                begin_time = time.time()
M
update  
malin10 已提交
559
                result = self._run(context, model_dict)
560 561
                end_time = time.time()
                seconds = end_time - begin_time
M
update  
malin10 已提交
562 563
                message = "Infer {} of epoch {} done, use time: {}".format(
                    model_dict["name"], epoch_name, seconds)
M
update  
malin10 已提交
564 565 566
                metrics_result = []
                for key in metrics:
                    if isinstance(metrics[key], Metric):
M
bug fix  
malin10 已提交
567
                        _str = metrics[key].calc_global_metrics(
M
update  
malin10 已提交
568 569
                            None,
                            context["model"][model_dict["name"]]["scope"])
M
malin10 已提交
570
                        metrics_result.append(_str)
M
update  
malin10 已提交
571 572
                    elif result is not None:
                        _str = "{}={}".format(key, result[key])
M
malin10 已提交
573
                        metrics_result.append(_str)
M
update  
malin10 已提交
574 575
                if len(metrics_result) > 0:
                    message += ", global metrics: " + ", ".join(metrics_result)
M
update  
malin10 已提交
576 577
                print(message)

578 579 580 581 582 583 584 585 586 587 588 589 590 591
        context["status"] = "terminal_pass"

    def _load(self, context, model_dict, model_path):
        if model_path is None or model_path == "":
            return
        print("load persistables from", model_path)

        with fluid.scope_guard(context["model"][model_dict["name"]]["scope"]):
            train_prog = context["model"][model_dict["name"]]["main_program"]
            startup_prog = context["model"][model_dict["name"]][
                "startup_program"]
            with fluid.program_guard(train_prog, startup_prog):
                fluid.io.load_persistables(
                    context["exe"], model_path, main_program=train_prog)
M
update  
malin10 已提交
592 593 594 595
            clear_metrics = context["model"][model_dict["name"]][
                "model"].get_clear_metrics()
            for var in clear_metrics:
                var.clear()
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

    def _dir_check(self, context):
        dirname = envs.get_global_env(
            "runner." + context["runner_name"] + ".init_model_path", None)
        self.epoch_model_path_list = []
        self.epoch_model_name_list = []

        for file in os.listdir(dirname):
            file_path = os.path.join(dirname, file)
            if os.path.isdir(file_path):
                self.epoch_model_path_list.append(file_path)
                self.epoch_model_name_list.append(file)

        if len(self.epoch_model_path_list) == 0:
            self.epoch_model_path_list.append(dirname)
            self.epoch_model_name_list.append(dirname)