engine.cc 9.2 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
#include <string>
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

int TensorRTEngine::runtime_batch_ = 1;

void TensorRTEngine::Build(const DescType &paddle_model) {
  PADDLE_ENFORCE(false, "not implemented");
}

void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
  freshDeviceId();
38
  const std::thread::id tid = std::this_thread::get_id();
X
xiexionghang 已提交
39
  batch_size_ = batch_size;
40 41 42 43 44 45 46
  if (infer_context_.find(tid) == infer_context_.end()) {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        "You should build engine first and then set the context.");
    infer_context_[tid].reset(infer_engine_->createExecutionContext());
  }
  infer_context_[tid]->enqueue(batch_size, buffers->data(), stream, nullptr);
X
xiexionghang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60
  cudaStreamSynchronize(stream);
  SetRuntimeBatch(batch_size);
}

void TensorRTEngine::FreezeNetwork() {
  freshDeviceId();
  VLOG(3) << "TRT to freeze network";
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  PADDLE_ENFORCE(infer_network_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
#if IS_TRT_VERSION_GE(5000)
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    infer_builder_->setFp16Mode(support_fp16);
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
    }
  }
#else
  if (enable_fp16)
    LOG(INFO) << "Using FP16 in Paddle-TRT must ensure that the version of TRT "
                 "is at least 5."
                 "So, use FP32 to run.";
#endif
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);

  if (enable_int8) {
X
xiexionghang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    infer_builder_->setInt8Mode(true);
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
      for (int i = 0; i < infer_network_->getNbLayers(); i++) {
        auto layer = infer_network_->getLayer(i);
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
      for (int i = 0; i < infer_network_->getNbInputs(); i++) {
        all_t.insert(infer_network_->getInput(i));
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
          LOG(WARNING)
              << "We are in trt int8 mode(not calibration), scale not setted"
              << " for tensor " << t->getName()
              << ", this might be ok when trt does not need this range";
        }
      }
#endif
    }
  }

  infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");
}

nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
                                                nvinfer1::DataType dtype,
                                                const nvinfer1::Dims &dims) {
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
                    name);

  PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
  auto *input = infer_network_->addInput(name.c_str(), dtype, dims);
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
  buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
                        analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
  PADDLE_ENFORCE(input->isNetworkInput());
  TensorRTEngine::SetITensor(name, input);
  return input;
}

void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

  auto *output = layer->getOutput(offset);
  SetITensor(name, output);
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
  PADDLE_ENFORCE(!output->isNetworkInput());
  infer_network_->markOutput(*output);
  PADDLE_ENFORCE(output->isNetworkOutput());
149 150
  // output buffers' size can only be decided later, set zero here to mark this
  // and will reset later.
X
xiexionghang 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
  buffer_sizes_[name] = 0;
}

bool TensorRTEngine::HasDeclared(const std::string &name) {
  return buffer_sizes_.count(name) > 0;
}

void TensorRTEngine::DeclareOutput(const std::string &name) {
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

  auto *output = TensorRTEngine::GetITensor(name);
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
  PADDLE_ENFORCE(!output->isNetworkInput());
  infer_network_->markOutput(*output);
167 168
  // output buffers' size can only be decided later, set zero here to mark this
  // and will reset later.
X
xiexionghang 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  buffer_sizes_[name] = 0;
}

void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
  PADDLE_ENFORCE(tensor != nullptr);
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
                    name);
  itensor_map_[name] = tensor;
}

nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
  return itensor_map_[name];
}

void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
193 194 195
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string name_with_suffix = name + name_suffix;
X
xiexionghang 已提交
196 197
  auto w_dims = weight_tensor->dims();
  platform::CPUPlace cpu_place;
198 199 200 201 202 203 204 205 206 207 208
  PADDLE_ENFORCE_EQ(
      weight_map.count(name_with_suffix), 0,
      "During TRT Op converter: We set weight %s with the same name "
      "twice into the weight_map",
      name_with_suffix);
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
X
xiexionghang 已提交
209 210 211

  if (enable_int8) {
    // when the op is fc, scale's size should be 1
212
    // when the op is conv, scale's size should be w_dims[0]
X
xiexionghang 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    bool valid_scale_size =
        (scale.size() == 1 || scale.size() == static_cast<size_t>(w_dims[0]));
    PADDLE_ENFORCE(valid_scale_size, "TRT int8 quant: invalid scale size");
    for (int i = 0; i < weight_tensor->numel(); i++) {
      bool is_valid_int8 =
          ((weight_data[i] >= -128) && (weight_data[i] <= 127));
      PADDLE_ENFORCE(is_valid_int8,
                     "We are in anakin subgraph int8 mode, the weight of conv "
                     "should be in range [-128, 127]");
      if (scale.size() == 1) {
        weight_data[i] *= (scale[0] / 127);
      } else {
        PADDLE_ENFORCE(w_dims.size() == 4,
                       "TRT int8 quant : We only use the channel quant for "
                       "conv op, so the weight dims should be 4.");
        int inner_size = w_dims[1] * w_dims[2] * w_dims[3];
        weight_data[i] *= (scale[i / inner_size] / 127);
      }
    }
  }
  return weight_data;
}

int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
  owned_plugin_.emplace_back(plugin);
  return infer_network_.get()->addPluginExt(inputs, num_inputs, *plugin);
}

void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
  PADDLE_ENFORCE_LT(device_id_, count);
  cudaSetDevice(device_id_);
}

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle