engine.cc 8.1 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
#include <string>
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

int TensorRTEngine::runtime_batch_ = 1;

void TensorRTEngine::Build(const DescType &paddle_model) {
  PADDLE_ENFORCE(false, "not implemented");
}

void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
  freshDeviceId();
  batch_size_ = batch_size;
  infer_context_->enqueue(batch_size, buffers->data(), stream, nullptr);
  cudaStreamSynchronize(stream);
  SetRuntimeBatch(batch_size);
}

void TensorRTEngine::FreezeNetwork() {
  freshDeviceId();
  VLOG(3) << "TRT to freeze network";
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  PADDLE_ENFORCE(infer_network_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
  if (enable_int8_) {
    infer_builder_->setInt8Mode(true);
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
      for (int i = 0; i < infer_network_->getNbLayers(); i++) {
        auto layer = infer_network_->getLayer(i);
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
      for (int i = 0; i < infer_network_->getNbInputs(); i++) {
        all_t.insert(infer_network_->getInput(i));
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
          LOG(WARNING)
              << "We are in trt int8 mode(not calibration), scale not setted"
              << " for tensor " << t->getName()
              << ", this might be ok when trt does not need this range";
        }
      }
#endif
    }
  }

  infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");

  infer_context_.reset(infer_engine_->createExecutionContext());
}

nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
                                                nvinfer1::DataType dtype,
                                                const nvinfer1::Dims &dims) {
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
                    name);

  PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
  auto *input = infer_network_->addInput(name.c_str(), dtype, dims);
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
  buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
                        analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
  PADDLE_ENFORCE(input->isNetworkInput());
  TensorRTEngine::SetITensor(name, input);
  return input;
}

void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

  auto *output = layer->getOutput(offset);
  SetITensor(name, output);
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
  PADDLE_ENFORCE(!output->isNetworkInput());
  infer_network_->markOutput(*output);
  PADDLE_ENFORCE(output->isNetworkOutput());
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

bool TensorRTEngine::HasDeclared(const std::string &name) {
  return buffer_sizes_.count(name) > 0;
}

void TensorRTEngine::DeclareOutput(const std::string &name) {
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

  auto *output = TensorRTEngine::GetITensor(name);
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
  PADDLE_ENFORCE(!output->isNetworkInput());
  infer_network_->markOutput(*output);
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
  PADDLE_ENFORCE(tensor != nullptr);
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
                    name);
  itensor_map_[name] = tensor;
}

nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
  return itensor_map_[name];
}

void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
  auto w_dims = weight_tensor->dims();
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE(!weight_map.count(name),
                 "During TRT Op converter: We set weight %s with the same name "
                 "twice into the weight_map",
                 name);
  weight_map[name].reset(new framework::Tensor());
  weight_map[name]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name].get());
  float *weight_data = weight_map[name]->mutable_data<float>(cpu_place);

  if (enable_int8) {
    // when the op is fc, scale's size should be 1
    // when the op is conv, the scale's size should be w_dims[0]
    bool valid_scale_size =
        (scale.size() == 1 || scale.size() == static_cast<size_t>(w_dims[0]));
    PADDLE_ENFORCE(valid_scale_size, "TRT int8 quant: invalid scale size");
    for (int i = 0; i < weight_tensor->numel(); i++) {
      bool is_valid_int8 =
          ((weight_data[i] >= -128) && (weight_data[i] <= 127));
      PADDLE_ENFORCE(is_valid_int8,
                     "We are in anakin subgraph int8 mode, the weight of conv "
                     "should be in range [-128, 127]");
      if (scale.size() == 1) {
        weight_data[i] *= (scale[0] / 127);
      } else {
        PADDLE_ENFORCE(w_dims.size() == 4,
                       "TRT int8 quant : We only use the channel quant for "
                       "conv op, so the weight dims should be 4.");
        int inner_size = w_dims[1] * w_dims[2] * w_dims[3];
        weight_data[i] *= (scale[i / inner_size] / 127);
      }
    }
  }
  return weight_data;
}

int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
  owned_plugin_.emplace_back(plugin);
  return infer_network_.get()->addPluginExt(inputs, num_inputs, *plugin);
}

void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
  PADDLE_ENFORCE_LT(device_id_, count);
  cudaSetDevice(device_id_);
}

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle