data_layout_transform.h 2.7 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <map>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable.h"

namespace paddle {
namespace framework {

#ifdef PADDLE_WITH_MKLDNN
using MKLDNNFormat = mkldnn::memory::format;
using MKLDNNDataType = mkldnn::memory::data_type;

inline MKLDNNFormat ToMKLDNNFormat(const DataLayout& layout) {
  switch (layout) {
    case DataLayout::kNHWC:
      return MKLDNNFormat::nhwc;
    case DataLayout::kNCHW:
      return MKLDNNFormat::nchw;
    default:
      PADDLE_THROW("Fail to convert layout %s to MKLDNN format",
                   DataLayoutToString(layout));
  }
}

inline DataLayout ToPaddleLayout(const MKLDNNFormat& format) {
  switch (format) {
    case MKLDNNFormat::nhwc:
      return DataLayout::kNHWC;
    case MKLDNNFormat::nchw:
      return DataLayout::kNCHW;
    default:
      PADDLE_THROW("Fail to convert MKLDNN format to paddle layout");
  }
}

inline MKLDNNDataType ToMKLDNNDataType(proto::VarType::Type type) {
  static std::unordered_map<int, MKLDNNDataType> dict{
      {DataTypeTrait<float>::DataType(), MKLDNNDataType::f32},
      {DataTypeTrait<int8_t>::DataType(), MKLDNNDataType::s8},
      {DataTypeTrait<uint8_t>::DataType(), MKLDNNDataType::u8},
      {DataTypeTrait<int16_t>::DataType(), MKLDNNDataType::s16},
      {DataTypeTrait<int32_t>::DataType(), MKLDNNDataType::s32}};
  auto iter = dict.find(static_cast<int>(type));
  if (iter != dict.end()) return iter->second;
  return MKLDNNDataType::data_undef;
}

#endif

void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
                               const OpKernelType& expected_kernel_type,
                               const Tensor& in, Tensor* out);

std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to);

void TransDataLayout(const OpKernelType& kernel_type_for_var,
                     const OpKernelType& expected_kernel_type, const Tensor& in,
                     Tensor* out);

}  // namespace framework
}  // namespace paddle