// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include "paddle/fluid/framework/op_kernel_type.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/variable.h" namespace paddle { namespace framework { #ifdef PADDLE_WITH_MKLDNN using MKLDNNFormat = mkldnn::memory::format; using MKLDNNDataType = mkldnn::memory::data_type; inline MKLDNNFormat ToMKLDNNFormat(const DataLayout& layout) { switch (layout) { case DataLayout::kNHWC: return MKLDNNFormat::nhwc; case DataLayout::kNCHW: return MKLDNNFormat::nchw; default: PADDLE_THROW("Fail to convert layout %s to MKLDNN format", DataLayoutToString(layout)); } } inline DataLayout ToPaddleLayout(const MKLDNNFormat& format) { switch (format) { case MKLDNNFormat::nhwc: return DataLayout::kNHWC; case MKLDNNFormat::nchw: return DataLayout::kNCHW; default: PADDLE_THROW("Fail to convert MKLDNN format to paddle layout"); } } inline MKLDNNDataType ToMKLDNNDataType(proto::VarType::Type type) { static std::unordered_map dict{ {DataTypeTrait::DataType(), MKLDNNDataType::f32}, {DataTypeTrait::DataType(), MKLDNNDataType::s8}, {DataTypeTrait::DataType(), MKLDNNDataType::u8}, {DataTypeTrait::DataType(), MKLDNNDataType::s16}, {DataTypeTrait::DataType(), MKLDNNDataType::s32}}; auto iter = dict.find(static_cast(type)); if (iter != dict.end()) return iter->second; return MKLDNNDataType::data_undef; } #endif void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var, const OpKernelType& expected_kernel_type, const Tensor& in, Tensor* out); std::vector GetAxis(const DataLayout& from, const DataLayout& to); void TransDataLayout(const OpKernelType& kernel_type_for_var, const OpKernelType& expected_kernel_type, const Tensor& in, Tensor* out); } // namespace framework } // namespace paddle