single_infer.py 15.0 KB
Newer Older
X
fix  
xjqbest 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""

from __future__ import print_function

import time
import logging
import os
import paddle.fluid as fluid

from paddlerec.core.trainers.transpiler_trainer import TranspileTrainer
from paddlerec.core.utils import envs
from paddlerec.core.reader import SlotReader
from paddlerec.core.utils import dataloader_instance

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


class SingleInfer(TranspileTrainer):
    def __init__(self, config=None):
        super(TranspileTrainer, self).__init__(config)
        self._env = self._config
        device = envs.get_global_env("device")
        if device == 'gpu':
            self._place = fluid.CUDAPlace(0)
        elif device == 'cpu':
            self._place = fluid.CPUPlace()
        self._exe = fluid.Executor(self._place)
        self.processor_register()
        self._model = {}
        self._dataset = {}
        envs.set_global_envs(self._config)
        envs.update_workspace()
        self._runner_name = envs.get_global_env("mode")
X
fix  
xjqbest 已提交
51 52 53 54 55 56
        device = envs.get_global_env("runner." + self._runner_name + ".device")
        if device == 'gpu':
            self._place = fluid.CUDAPlace(0)
        elif device == 'cpu':
            self._place = fluid.CPUPlace()
        self._exe = fluid.Executor(self._place)
X
fix  
xjqbest 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

    def processor_register(self):
        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
        self.regist_context_processor('startup_pass', self.startup)
        self.regist_context_processor('train_pass', self.executor_train)
        self.regist_context_processor('terminal_pass', self.terminal)

    def instance(self, context):
        context['status'] = 'init_pass'

    def _get_dataset(self, dataset_name):
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots")
        dense_slots = envs.get_global_env(name + "dense_slots")
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        reader_class = envs.get_global_env(name + "data_converter")
        abs_dir = os.path.dirname(os.path.abspath(__file__))
        reader = os.path.join(abs_dir, '../utils', 'dataset_instance.py')

        if sparse_slots is None and dense_slots is None:
            pipe_cmd = "python {} {} {} {}".format(reader, reader_class,
                                                   "TRAIN", self._config_yaml)
        else:
            if sparse_slots is None:
                sparse_slots = "#"
            if dense_slots is None:
                dense_slots = "#"
            padding = envs.get_global_env(name + "padding", 0)
            pipe_cmd = "python {} {} {} {} {} {} {} {}".format(
                reader, "slot", "slot", self._config_yaml, "fake", \
                sparse_slots.replace(" ", "#"), dense_slots.replace(" ", "#"), str(padding))

        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_batch_size(envs.get_global_env(name + "batch_size"))
        dataset.set_pipe_command(pipe_cmd)
        train_data_path = envs.get_global_env(name + "data_path")
        file_list = [
            os.path.join(train_data_path, x)
            for x in os.listdir(train_data_path)
        ]
        dataset.set_filelist(file_list)
        for model_dict in self._env["phase"]:
            if model_dict["dataset_name"] == dataset_name:
                model = self._model[model_dict["name"]][3]
                inputs = model._infer_data_var
                dataset.set_use_var(inputs)
                break
        return dataset

    def _get_dataloader(self, dataset_name, dataloader):
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots")
        dense_slots = envs.get_global_env(name + "dense_slots")
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        reader_class = envs.get_global_env(name + "data_converter")
        abs_dir = os.path.dirname(os.path.abspath(__file__))
        if sparse_slots is None and dense_slots is None:
            reader = dataloader_instance.dataloader_by_name(
                reader_class, dataset_name, self._config_yaml)
            reader_class = envs.lazy_instance_by_fliename(reader_class,
                                                          "TrainReader")
            reader_ins = reader_class(self._config_yaml)
        else:
            reader = dataloader_instance.slotdataloader_by_name(
                "", dataset_name, self._config_yaml)
            reader_ins = SlotReader(self._config_yaml)
        if hasattr(reader_ins, 'generate_batch_from_trainfiles'):
            dataloader.set_sample_list_generator(reader)
        else:
            dataloader.set_sample_generator(reader, batch_size)
        return dataloader

    def _create_dataset(self, dataset_name):
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots")
        dense_slots = envs.get_global_env(name + "dense_slots")
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        type_name = envs.get_global_env(name + "type")
        if envs.get_platform() != "LINUX":
            print("platform ", envs.get_platform(),
                  " change reader to DataLoader")
            type_name = "DataLoader"
        padding = 0

        if type_name == "DataLoader":
            return None
        else:
            return self._get_dataset(dataset_name)

    def init(self, context):
        for model_dict in self._env["phase"]:
            self._model[model_dict["name"]] = [None] * 5
            train_program = fluid.Program()
            startup_program = fluid.Program()
            scope = fluid.Scope()
            dataset_name = model_dict["dataset_name"]
            opt_name = envs.get_global_env("hyper_parameters.optimizer.class")
            opt_lr = envs.get_global_env(
                "hyper_parameters.optimizer.learning_rate")
            opt_strategy = envs.get_global_env(
                "hyper_parameters.optimizer.strategy")
            with fluid.program_guard(train_program, startup_program):
                with fluid.unique_name.guard():
                    with fluid.scope_guard(scope):
                        model_path = model_dict["model"].replace(
                            "{workspace}",
                            envs.path_adapter(self._env["workspace"]))
                        model = envs.lazy_instance_by_fliename(
                            model_path, "Model")(self._env)
                        model._infer_data_var = model.input_data(
                            dataset_name=model_dict["dataset_name"])
                        if envs.get_global_env("dataset." + dataset_name +
                                               ".type") == "DataLoader":
                            model._init_dataloader(is_infer=True)
                            self._get_dataloader(dataset_name,
                                                 model._data_loader)
                        model.net(model._infer_data_var, True)
            self._model[model_dict["name"]][0] = train_program
            self._model[model_dict["name"]][1] = startup_program
            self._model[model_dict["name"]][2] = scope
            self._model[model_dict["name"]][3] = model
            self._model[model_dict["name"]][4] = train_program.clone()

        for dataset in self._env["dataset"]:
            if dataset["type"] != "DataLoader":
                self._dataset[dataset["name"]] = self._create_dataset(dataset[
                    "name"])

        context['status'] = 'startup_pass'

    def startup(self, context):
        for model_dict in self._env["phase"]:
            with fluid.scope_guard(self._model[model_dict["name"]][2]):
                self._exe.run(self._model[model_dict["name"]][1])
        context['status'] = 'train_pass'

    def executor_train(self, context):
X
fix  
xjqbest 已提交
198 199
        epochs = int(
            envs.get_global_env("runner." + self._runner_name + ".epochs"))
X
fix  
xjqbest 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        for j in range(epochs):
            for model_dict in self._env["phase"]:
                if j == 0:
                    with fluid.scope_guard(self._model[model_dict["name"]][2]):
                        train_prog = self._model[model_dict["name"]][0]
                        startup_prog = self._model[model_dict["name"]][1]
                        with fluid.program_guard(train_prog, startup_prog):
                            self.load()
                reader_name = model_dict["dataset_name"]
                name = "dataset." + reader_name + "."
                begin_time = time.time()
                if envs.get_global_env(name + "type") == "DataLoader":
                    self._executor_dataloader_train(model_dict)
                else:
                    self._executor_dataset_train(model_dict)
                with fluid.scope_guard(self._model[model_dict["name"]][2]):
                    train_prog = self._model[model_dict["name"]][4]
                    startup_prog = self._model[model_dict["name"]][1]
                    with fluid.program_guard(train_prog, startup_prog):
                        self.save(j)
                end_time = time.time()
                seconds = end_time - begin_time
            print("epoch {} done, time elasped: {}".format(j, seconds))
        context['status'] = "terminal_pass"

    def _executor_dataset_train(self, model_dict):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = self._model[model_name][3]
        fetch_vars = []
        fetch_alias = []
        fetch_period = 20
        metrics = model_class.get_infer_results()
        if metrics:
            fetch_vars = metrics.values()
            fetch_alias = metrics.keys()
        scope = self._model[model_name][2]
        program = self._model[model_name][0]
        reader = self._dataset[reader_name]
        with fluid.scope_guard(scope):
            self._exe.infer_from_dataset(
                program=program,
                dataset=reader,
                fetch_list=fetch_vars,
                fetch_info=fetch_alias,
                print_period=fetch_period)

    def _executor_dataloader_train(self, model_dict):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = self._model[model_name][3]
        program = self._model[model_name][0].clone()
        fetch_vars = []
        fetch_alias = []
        fetch_period = 20
        metrics = model_class.get_infer_results()
        if metrics:
            fetch_vars = metrics.values()
            fetch_alias = metrics.keys()
        metrics_varnames = []
        metrics_format = []
        fetch_period = 20
        metrics_format.append("{}: {{}}".format("batch"))
        for name, var in metrics.items():
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))
        metrics_format = ", ".join(metrics_format)

        reader = self._model[model_name][3]._data_loader
        reader.start()
        batch_id = 0
        scope = self._model[model_name][2]
        with fluid.scope_guard(scope):
            try:
                while True:
                    metrics_rets = self._exe.run(program=program,
                                                 fetch_list=metrics_varnames)
                    metrics = [batch_id]
                    metrics.extend(metrics_rets)

                    if batch_id % fetch_period == 0 and batch_id != 0:
                        print(metrics_format.format(*metrics))
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()

    def terminal(self, context):
        context['is_exit'] = True

    def load(self, is_fleet=False):
        name = "runner." + self._runner_name + "."
        dirname = envs.get_global_env("epoch.init_model_path", None)
        if dirname is None:
            return
        print("single_infer going to load ", dirname)
        if is_fleet:
            fleet.load_persistables(self._exe, dirname)
        else:
            fluid.io.load_persistables(self._exe, dirname)

    def save(self, epoch_id, is_fleet=False):
        def need_save(epoch_id, epoch_interval, is_last=False):
            if is_last:
                return True
            if epoch_id == -1:
                return False

            return epoch_id % epoch_interval == 0

        def save_inference_model():
            name = "runner." + self._runner_name + "."
            save_interval = int(
                envs.get_global_env(name + "save_inference_interval", -1))
            if not need_save(epoch_id, save_interval, False):
                return
            feed_varnames = envs.get_global_env(
                name + "save_inference_feed_varnames", None)
            fetch_varnames = envs.get_global_env(
                name + "save_inference_fetch_varnames", None)
            if feed_varnames is None or fetch_varnames is None or feed_varnames == "":
                return
            fetch_vars = [
                fluid.default_main_program().global_block().vars[varname]
                for varname in fetch_varnames
            ]
            dirname = envs.get_global_env(name + "save_inference_path", None)

            assert dirname is not None
            dirname = os.path.join(dirname, str(epoch_id))

            if is_fleet:
                fleet.save_inference_model(self._exe, dirname, feed_varnames,
                                           fetch_vars)
            else:
                fluid.io.save_inference_model(dirname, feed_varnames,
                                              fetch_vars, self._exe)

        def save_persistables():
            name = "runner." + self._runner_name + "."
            save_interval = int(
                envs.get_global_env(name + "save_checkpoint_interval", -1))
            if not need_save(epoch_id, save_interval, False):
                return
            dirname = envs.get_global_env(name + "save_checkpoint_path", None)
            if dirname is None or dirname == "":
                return
            dirname = os.path.join(dirname, str(epoch_id))
            if is_fleet:
                fleet.save_persistables(self._exe, dirname)
            else:
                fluid.io.save_persistables(self._exe, dirname)

        save_persistables()
        save_inference_model()