提交 273cdf70 编写于 作者: X xjqbest

fix

上级 019cb085
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""
from __future__ import print_function
import time
import logging
import os
import paddle.fluid as fluid
from paddlerec.core.trainers.transpiler_trainer import TranspileTrainer
from paddlerec.core.utils import envs
from paddlerec.core.reader import SlotReader
from paddlerec.core.utils import dataloader_instance
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
class SingleInfer(TranspileTrainer):
def __init__(self, config=None):
super(TranspileTrainer, self).__init__(config)
self._env = self._config
device = envs.get_global_env("device")
if device == 'gpu':
self._place = fluid.CUDAPlace(0)
elif device == 'cpu':
self._place = fluid.CPUPlace()
self._exe = fluid.Executor(self._place)
self.processor_register()
self._model = {}
self._dataset = {}
envs.set_global_envs(self._config)
envs.update_workspace()
self._runner_name = envs.get_global_env("mode")
def processor_register(self):
self.regist_context_processor('uninit', self.instance)
self.regist_context_processor('init_pass', self.init)
self.regist_context_processor('startup_pass', self.startup)
self.regist_context_processor('train_pass', self.executor_train)
self.regist_context_processor('terminal_pass', self.terminal)
def instance(self, context):
context['status'] = 'init_pass'
def _get_dataset(self, dataset_name):
name = "dataset." + dataset_name + "."
sparse_slots = envs.get_global_env(name + "sparse_slots")
dense_slots = envs.get_global_env(name + "dense_slots")
thread_num = envs.get_global_env(name + "thread_num")
batch_size = envs.get_global_env(name + "batch_size")
reader_class = envs.get_global_env(name + "data_converter")
abs_dir = os.path.dirname(os.path.abspath(__file__))
reader = os.path.join(abs_dir, '../utils', 'dataset_instance.py')
if sparse_slots is None and dense_slots is None:
pipe_cmd = "python {} {} {} {}".format(reader, reader_class,
"TRAIN", self._config_yaml)
else:
if sparse_slots is None:
sparse_slots = "#"
if dense_slots is None:
dense_slots = "#"
padding = envs.get_global_env(name + "padding", 0)
pipe_cmd = "python {} {} {} {} {} {} {} {}".format(
reader, "slot", "slot", self._config_yaml, "fake", \
sparse_slots.replace(" ", "#"), dense_slots.replace(" ", "#"), str(padding))
dataset = fluid.DatasetFactory().create_dataset()
dataset.set_batch_size(envs.get_global_env(name + "batch_size"))
dataset.set_pipe_command(pipe_cmd)
train_data_path = envs.get_global_env(name + "data_path")
file_list = [
os.path.join(train_data_path, x)
for x in os.listdir(train_data_path)
]
dataset.set_filelist(file_list)
for model_dict in self._env["phase"]:
if model_dict["dataset_name"] == dataset_name:
model = self._model[model_dict["name"]][3]
inputs = model._infer_data_var
dataset.set_use_var(inputs)
break
return dataset
def _get_dataloader(self, dataset_name, dataloader):
name = "dataset." + dataset_name + "."
sparse_slots = envs.get_global_env(name + "sparse_slots")
dense_slots = envs.get_global_env(name + "dense_slots")
thread_num = envs.get_global_env(name + "thread_num")
batch_size = envs.get_global_env(name + "batch_size")
reader_class = envs.get_global_env(name + "data_converter")
abs_dir = os.path.dirname(os.path.abspath(__file__))
if sparse_slots is None and dense_slots is None:
reader = dataloader_instance.dataloader_by_name(
reader_class, dataset_name, self._config_yaml)
reader_class = envs.lazy_instance_by_fliename(reader_class,
"TrainReader")
reader_ins = reader_class(self._config_yaml)
else:
reader = dataloader_instance.slotdataloader_by_name(
"", dataset_name, self._config_yaml)
reader_ins = SlotReader(self._config_yaml)
if hasattr(reader_ins, 'generate_batch_from_trainfiles'):
dataloader.set_sample_list_generator(reader)
else:
dataloader.set_sample_generator(reader, batch_size)
return dataloader
def _create_dataset(self, dataset_name):
name = "dataset." + dataset_name + "."
sparse_slots = envs.get_global_env(name + "sparse_slots")
dense_slots = envs.get_global_env(name + "dense_slots")
thread_num = envs.get_global_env(name + "thread_num")
batch_size = envs.get_global_env(name + "batch_size")
type_name = envs.get_global_env(name + "type")
if envs.get_platform() != "LINUX":
print("platform ", envs.get_platform(),
" change reader to DataLoader")
type_name = "DataLoader"
padding = 0
if type_name == "DataLoader":
return None
else:
return self._get_dataset(dataset_name)
def init(self, context):
for model_dict in self._env["phase"]:
self._model[model_dict["name"]] = [None] * 5
train_program = fluid.Program()
startup_program = fluid.Program()
scope = fluid.Scope()
dataset_name = model_dict["dataset_name"]
opt_name = envs.get_global_env("hyper_parameters.optimizer.class")
opt_lr = envs.get_global_env(
"hyper_parameters.optimizer.learning_rate")
opt_strategy = envs.get_global_env(
"hyper_parameters.optimizer.strategy")
with fluid.program_guard(train_program, startup_program):
with fluid.unique_name.guard():
with fluid.scope_guard(scope):
model_path = model_dict["model"].replace(
"{workspace}",
envs.path_adapter(self._env["workspace"]))
model = envs.lazy_instance_by_fliename(
model_path, "Model")(self._env)
model._infer_data_var = model.input_data(
dataset_name=model_dict["dataset_name"])
if envs.get_global_env("dataset." + dataset_name +
".type") == "DataLoader":
model._init_dataloader(is_infer=True)
self._get_dataloader(dataset_name,
model._data_loader)
model.net(model._infer_data_var, True)
self._model[model_dict["name"]][0] = train_program
self._model[model_dict["name"]][1] = startup_program
self._model[model_dict["name"]][2] = scope
self._model[model_dict["name"]][3] = model
self._model[model_dict["name"]][4] = train_program.clone()
for dataset in self._env["dataset"]:
if dataset["type"] != "DataLoader":
self._dataset[dataset["name"]] = self._create_dataset(dataset[
"name"])
context['status'] = 'startup_pass'
def startup(self, context):
for model_dict in self._env["phase"]:
with fluid.scope_guard(self._model[model_dict["name"]][2]):
self._exe.run(self._model[model_dict["name"]][1])
context['status'] = 'train_pass'
def executor_train(self, context):
epochs = int(self._env["epochs"])
for j in range(epochs):
for model_dict in self._env["phase"]:
if j == 0:
with fluid.scope_guard(self._model[model_dict["name"]][2]):
train_prog = self._model[model_dict["name"]][0]
startup_prog = self._model[model_dict["name"]][1]
with fluid.program_guard(train_prog, startup_prog):
self.load()
reader_name = model_dict["dataset_name"]
name = "dataset." + reader_name + "."
begin_time = time.time()
if envs.get_global_env(name + "type") == "DataLoader":
self._executor_dataloader_train(model_dict)
else:
self._executor_dataset_train(model_dict)
with fluid.scope_guard(self._model[model_dict["name"]][2]):
train_prog = self._model[model_dict["name"]][4]
startup_prog = self._model[model_dict["name"]][1]
with fluid.program_guard(train_prog, startup_prog):
self.save(j)
end_time = time.time()
seconds = end_time - begin_time
print("epoch {} done, time elasped: {}".format(j, seconds))
context['status'] = "terminal_pass"
def _executor_dataset_train(self, model_dict):
reader_name = model_dict["dataset_name"]
model_name = model_dict["name"]
model_class = self._model[model_name][3]
fetch_vars = []
fetch_alias = []
fetch_period = 20
metrics = model_class.get_infer_results()
if metrics:
fetch_vars = metrics.values()
fetch_alias = metrics.keys()
scope = self._model[model_name][2]
program = self._model[model_name][0]
reader = self._dataset[reader_name]
with fluid.scope_guard(scope):
self._exe.infer_from_dataset(
program=program,
dataset=reader,
fetch_list=fetch_vars,
fetch_info=fetch_alias,
print_period=fetch_period)
def _executor_dataloader_train(self, model_dict):
reader_name = model_dict["dataset_name"]
model_name = model_dict["name"]
model_class = self._model[model_name][3]
program = self._model[model_name][0].clone()
fetch_vars = []
fetch_alias = []
fetch_period = 20
metrics = model_class.get_infer_results()
if metrics:
fetch_vars = metrics.values()
fetch_alias = metrics.keys()
metrics_varnames = []
metrics_format = []
fetch_period = 20
metrics_format.append("{}: {{}}".format("batch"))
for name, var in metrics.items():
metrics_varnames.append(var.name)
metrics_format.append("{}: {{}}".format(name))
metrics_format = ", ".join(metrics_format)
reader = self._model[model_name][3]._data_loader
reader.start()
batch_id = 0
scope = self._model[model_name][2]
with fluid.scope_guard(scope):
try:
while True:
metrics_rets = self._exe.run(program=program,
fetch_list=metrics_varnames)
metrics = [batch_id]
metrics.extend(metrics_rets)
if batch_id % fetch_period == 0 and batch_id != 0:
print(metrics_format.format(*metrics))
batch_id += 1
except fluid.core.EOFException:
reader.reset()
def terminal(self, context):
context['is_exit'] = True
def load(self, is_fleet=False):
name = "runner." + self._runner_name + "."
dirname = envs.get_global_env("epoch.init_model_path", None)
if dirname is None:
return
print("single_infer going to load ", dirname)
if is_fleet:
fleet.load_persistables(self._exe, dirname)
else:
fluid.io.load_persistables(self._exe, dirname)
def save(self, epoch_id, is_fleet=False):
def need_save(epoch_id, epoch_interval, is_last=False):
if is_last:
return True
if epoch_id == -1:
return False
return epoch_id % epoch_interval == 0
def save_inference_model():
name = "runner." + self._runner_name + "."
save_interval = int(
envs.get_global_env(name + "save_inference_interval", -1))
if not need_save(epoch_id, save_interval, False):
return
feed_varnames = envs.get_global_env(
name + "save_inference_feed_varnames", None)
fetch_varnames = envs.get_global_env(
name + "save_inference_fetch_varnames", None)
if feed_varnames is None or fetch_varnames is None or feed_varnames == "":
return
fetch_vars = [
fluid.default_main_program().global_block().vars[varname]
for varname in fetch_varnames
]
dirname = envs.get_global_env(name + "save_inference_path", None)
assert dirname is not None
dirname = os.path.join(dirname, str(epoch_id))
if is_fleet:
fleet.save_inference_model(self._exe, dirname, feed_varnames,
fetch_vars)
else:
fluid.io.save_inference_model(dirname, feed_varnames,
fetch_vars, self._exe)
def save_persistables():
name = "runner." + self._runner_name + "."
save_interval = int(
envs.get_global_env(name + "save_checkpoint_interval", -1))
if not need_save(epoch_id, save_interval, False):
return
dirname = envs.get_global_env(name + "save_checkpoint_path", None)
if dirname is None or dirname == "":
return
dirname = os.path.join(dirname, str(epoch_id))
if is_fleet:
fleet.save_persistables(self._exe, dirname)
else:
fluid.io.save_persistables(self._exe, dirname)
save_persistables()
save_inference_model()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册