cluster_trainer.py 6.3 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function

C
chengmo 已提交
21
import os
T
tangwei 已提交
22
import paddle.fluid as fluid
T
tangwei 已提交
23 24 25 26
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
from paddle.fluid.incubate.fleet.base.role_maker import PaddleCloudRoleMaker

T
rename  
tangwei 已提交
27 28
from fleetrec.core.utils import envs
from fleetrec.core.trainers.transpiler_trainer import TranspileTrainer
T
tangwei 已提交
29 30


T
tangwei 已提交
31
class ClusterTrainer(TranspileTrainer):
T
tangwei 已提交
32 33 34 35
    def processor_register(self):
        role = PaddleCloudRoleMaker()
        fleet.init(role)

T
tangwei12 已提交
36
        if fleet.is_server():
T
tangwei 已提交
37 38 39 40 41 42
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
            self.regist_context_processor('server_pass', self.server)
        else:
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
C
chengmo 已提交
43
            self.regist_context_processor('startup_pass', self.startup)
Y
add din  
yaoxuefeng 已提交
44
            if envs.get_platform() == "LINUX" and envs.get_global_env("dataset_class", None, "train.reader") != "DataLoader":
T
tangwei 已提交
45 46
                self.regist_context_processor('train_pass', self.dataset_train)
            else:
C
chengmo 已提交
47 48
                self.regist_context_processor(
                    'train_pass', self.dataloader_train)
T
tangwei 已提交
49 50 51
            self.regist_context_processor('terminal_pass', self.terminal)

    def build_strategy(self):
T
tangwei 已提交
52
        mode = envs.get_runtime_environ("train.trainer.strategy")
T
fix bug  
tangwei 已提交
53
        assert mode in ["async", "geo", "sync", "half_async"]
T
tangwei 已提交
54

T
tangwei 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68
        strategy = None

        if mode == "async":
            strategy = StrategyFactory.create_async_strategy()
        elif mode == "geo":
            push_num = envs.get_global_env("train.strategy.mode.push_num", 100)
            strategy = StrategyFactory.create_geo_strategy(push_num)
        elif mode == "sync":
            strategy = StrategyFactory.create_sync_strategy()
        elif mode == "half_async":
            strategy = StrategyFactory.create_half_async_strategy()

        assert strategy is not None

T
tangwei 已提交
69
        self.strategy = strategy
T
tangwei 已提交
70 71 72
        return strategy

    def init(self, context):
T
tangwei 已提交
73
        self.model.train_net()
T
tangwei 已提交
74
        optimizer = self.model.optimizer()
C
chengmo 已提交
75 76 77 78 79
        optimizer_name = envs.get_global_env(
            "hyper_parameters.optimizer", None, "train.model")
        if optimizer_name not in ["", "sgd", "SGD", "Sgd"]:
            os.environ["FLAGS_communicator_is_sgd_optimizer"] = '0'

T
tangwei 已提交
80 81
        strategy = self.build_strategy()
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
T
tangwei 已提交
82
        optimizer.minimize(self.model.get_cost_op())
T
tangwei 已提交
83 84 85 86

        if fleet.is_server():
            context['status'] = 'server_pass'
        else:
T
tangwei 已提交
87 88 89 90 91 92 93 94
            self.fetch_vars = []
            self.fetch_alias = []
            self.fetch_period = self.model.get_fetch_period()

            metrics = self.model.get_metrics()
            if metrics:
                self.fetch_vars = metrics.values()
                self.fetch_alias = metrics.keys()
C
chengmo 已提交
95
            context['status'] = 'startup_pass'
T
tangwei 已提交
96 97 98 99 100 101

    def server(self, context):
        fleet.init_server()
        fleet.run_server()
        context['is_exit'] = True

C
chengmo 已提交
102
    def startup(self, context):
T
tangwei 已提交
103
        self._exe.run(fleet.startup_program)
C
chengmo 已提交
104
        context['status'] = 'train_pass'
T
tangwei 已提交
105

C
chengmo 已提交
106
    def dataloader_train(self, context):
T
tangwei 已提交
107 108
        fleet.init_worker()

T
tangwei 已提交
109
        reader = self._get_dataloader()
T
tangwei 已提交
110 111
        epochs = envs.get_global_env("train.epochs")

T
tangwei 已提交
112 113 114
        program = fluid.compiler.CompiledProgram(
            fleet.main_program).with_data_parallel(
            loss_name=self.model.get_cost_op().name,
C
chengmo 已提交
115 116
            build_strategy=self.strategy.get_build_strategy(),
            exec_strategy=self.strategy.get_execute_strategy())
T
tangwei 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

        metrics_varnames = []
        metrics_format = []

        metrics_format.append("{}: {{}}".format("epoch"))
        metrics_format.append("{}: {{}}".format("batch"))

        for name, var in self.model.get_metrics().items():
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))

        metrics_format = ", ".join(metrics_format)

        for epoch in range(epochs):
            reader.start()
            batch_id = 0
            try:
                while True:
                    metrics_rets = self._exe.run(
                        program=program,
                        fetch_list=metrics_varnames)

                    metrics = [epoch, batch_id]
                    metrics.extend(metrics_rets)

                    if batch_id % 10 == 0 and batch_id != 0:
                        print(metrics_format.format(*metrics))
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()

T
tangwei 已提交
148
        fleet.stop_worker()
T
tangwei 已提交
149
        context['status'] = 'terminal_pass'
T
tangwei 已提交
150

T
tangwei 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    def dataset_train(self, context):
        fleet.init_worker()

        dataset = self._get_dataset()
        epochs = envs.get_global_env("train.epochs")

        for i in range(epochs):
            self._exe.train_from_dataset(program=fluid.default_main_program(),
                                         dataset=dataset,
                                         fetch_list=self.fetch_vars,
                                         fetch_info=self.fetch_alias,
                                         print_period=self.fetch_period)
            self.save(i, "train", is_fleet=True)
        fleet.stop_worker()
        context['status'] = 'terminal_pass'

T
tangwei 已提交
167 168 169 170 171 172 173
    def infer(self, context):
        context['status'] = 'terminal_pass'

    def terminal(self, context):
        for model in self.increment_models:
            print("epoch :{}, dir: {}".format(model[0], model[1]))
        context['is_exit'] = True