cluster_trainer.py 6.1 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function

T
tangwei 已提交
21
import paddle.fluid as fluid
T
tangwei 已提交
22 23 24 25
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
from paddle.fluid.incubate.fleet.base.role_maker import PaddleCloudRoleMaker

T
rename  
tangwei 已提交
26 27
from fleetrec.core.utils import envs
from fleetrec.core.trainers.transpiler_trainer import TranspileTrainer
T
tangwei 已提交
28 29


T
tangwei 已提交
30
class ClusterTrainer(TranspileTrainer):
T
tangwei 已提交
31 32 33 34
    def processor_register(self):
        role = PaddleCloudRoleMaker()
        fleet.init(role)

T
tangwei12 已提交
35
        if fleet.is_server():
T
tangwei 已提交
36 37 38 39 40 41
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
            self.regist_context_processor('server_pass', self.server)
        else:
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
T
tangwei 已提交
42 43 44 45

            if envs.get_platform() == "LINUX":
                self.regist_context_processor('train_pass', self.dataset_train)
            else:
C
chengmo 已提交
46 47
                self.regist_context_processor(
                    'train_pass', self.dataloader_train)
T
tangwei 已提交
48 49 50
            self.regist_context_processor('terminal_pass', self.terminal)

    def build_strategy(self):
T
tangwei 已提交
51
        mode = envs.get_runtime_environ("train.trainer.strategy")
T
fix bug  
tangwei 已提交
52
        assert mode in ["async", "geo", "sync", "half_async"]
T
tangwei 已提交
53

T
tangwei 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67
        strategy = None

        if mode == "async":
            strategy = StrategyFactory.create_async_strategy()
        elif mode == "geo":
            push_num = envs.get_global_env("train.strategy.mode.push_num", 100)
            strategy = StrategyFactory.create_geo_strategy(push_num)
        elif mode == "sync":
            strategy = StrategyFactory.create_sync_strategy()
        elif mode == "half_async":
            strategy = StrategyFactory.create_half_async_strategy()

        assert strategy is not None

T
tangwei 已提交
68
        self.strategy = strategy
T
tangwei 已提交
69 70 71
        return strategy

    def init(self, context):
T
tangwei 已提交
72
        self.model.train_net()
T
tangwei 已提交
73
        optimizer = self.model.optimizer()
C
chengmo 已提交
74 75 76
        optimizer_name = envs.get_global_env("hyper_parameters.optimizer")
        if optimizer_name in ['adam', 'ADAM', 'Adagrad', 'ADAGRAD']:
            os.environ["FLAGS_communicator_is_sgd_optimizer"] = 0
T
tangwei 已提交
77 78
        strategy = self.build_strategy()
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
T
tangwei 已提交
79
        optimizer.minimize(self.model.get_cost_op())
T
tangwei 已提交
80 81 82 83

        if fleet.is_server():
            context['status'] = 'server_pass'
        else:
T
tangwei 已提交
84 85 86 87 88 89 90 91
            self.fetch_vars = []
            self.fetch_alias = []
            self.fetch_period = self.model.get_fetch_period()

            metrics = self.model.get_metrics()
            if metrics:
                self.fetch_vars = metrics.values()
                self.fetch_alias = metrics.keys()
T
tangwei 已提交
92 93 94 95 96 97 98
            context['status'] = 'train_pass'

    def server(self, context):
        fleet.init_server()
        fleet.run_server()
        context['is_exit'] = True

T
tangwei 已提交
99
    def dataloader_train(self, context):
T
tangwei 已提交
100
        self._exe.run(fleet.startup_program)
T
tangwei 已提交
101

T
tangwei 已提交
102 103
        fleet.init_worker()

T
tangwei 已提交
104
        reader = self._get_dataloader()
T
tangwei 已提交
105 106
        epochs = envs.get_global_env("train.epochs")

T
tangwei 已提交
107 108 109
        program = fluid.compiler.CompiledProgram(
            fleet.main_program).with_data_parallel(
            loss_name=self.model.get_cost_op().name,
C
chengmo 已提交
110 111
            build_strategy=self.strategy.get_build_strategy(),
            exec_strategy=self.strategy.get_execute_strategy())
T
tangwei 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

        metrics_varnames = []
        metrics_format = []

        metrics_format.append("{}: {{}}".format("epoch"))
        metrics_format.append("{}: {{}}".format("batch"))

        for name, var in self.model.get_metrics().items():
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))

        metrics_format = ", ".join(metrics_format)

        for epoch in range(epochs):
            reader.start()
            batch_id = 0
            try:
                while True:
                    metrics_rets = self._exe.run(
                        program=program,
                        fetch_list=metrics_varnames)

                    metrics = [epoch, batch_id]
                    metrics.extend(metrics_rets)

                    if batch_id % 10 == 0 and batch_id != 0:
                        print(metrics_format.format(*metrics))
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()

T
tangwei 已提交
143
        fleet.stop_worker()
T
tangwei 已提交
144
        context['status'] = 'terminal_pass'
T
tangwei 已提交
145

T
tangwei 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    def dataset_train(self, context):
        self._exe.run(fleet.startup_program)
        fleet.init_worker()

        dataset = self._get_dataset()
        epochs = envs.get_global_env("train.epochs")

        for i in range(epochs):
            self._exe.train_from_dataset(program=fluid.default_main_program(),
                                         dataset=dataset,
                                         fetch_list=self.fetch_vars,
                                         fetch_info=self.fetch_alias,
                                         print_period=self.fetch_period)
            self.save(i, "train", is_fleet=True)
        fleet.stop_worker()
        context['status'] = 'terminal_pass'

T
tangwei 已提交
163 164 165 166 167 168 169
    def infer(self, context):
        context['status'] = 'terminal_pass'

    def terminal(self, context):
        for model in self.increment_models:
            print("epoch :{}, dir: {}".format(model[0], model[1]))
        context['is_exit'] = True