model.py 21.2 KB
Newer Older
C
chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# -*- coding=utf-8 -*-
"""
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
C
Chengmo 已提交
17
import paddle
C
chengmo 已提交
18 19
import paddle.fluid as fluid

20
from paddlerec.core.utils import envs
C
Chengmo 已提交
21
from paddlerec.core.model import ModelBase
C
chengmo 已提交
22 23 24 25 26


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)
C
Chengmo 已提交
27 28

    def _init_hyper_parameters(self):
C
chengmo 已提交
29
        # tree meta hyper parameters
C
Chengmo 已提交
30 31
        self.max_layers = envs.get_global_env("hyper_parameters.max_layers", 4)
        self.node_nums = envs.get_global_env("hyper_parameters.node_nums", 26)
C
chengmo 已提交
32
        self.leaf_node_nums = envs.get_global_env(
C
Chengmo 已提交
33
            "hyper_parameters.leaf_node_nums", 13)
C
chengmo 已提交
34
        self.output_positive = envs.get_global_env(
C
Chengmo 已提交
35
            "hyper_parameters.output_positive", True)
C
chengmo 已提交
36
        self.layer_node_num_list = envs.get_global_env(
C
Chengmo 已提交
37 38 39 40
            "hyper_parameters.layer_node_num_list", [2, 4, 7, 12])
        self.child_nums = envs.get_global_env("hyper_parameters.child_nums", 2)
        self.tree_layer_path = envs.get_global_env(
            "hyper_parameters.tree.tree_layer_path", None)
C
chengmo 已提交
41 42 43

        # model training hyper parameter
        self.node_emb_size = envs.get_global_env(
C
Chengmo 已提交
44
            "hyper_parameters.node_emb_size", 64)
C
chengmo 已提交
45
        self.input_emb_size = envs.get_global_env(
C
Chengmo 已提交
46 47
            "hyper_parameters.input_emb_size", 768)
        self.act = envs.get_global_env("hyper_parameters.act", "tanh")
C
chengmo 已提交
48
        self.neg_sampling_list = envs.get_global_env(
C
Chengmo 已提交
49
            "hyper_parameters.neg_sampling_list", [1, 2, 3, 4])
C
chengmo 已提交
50 51

        # model infer hyper parameter
C
Chengmo 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65
        self.topK = envs.get_global_env(
            "hyper_parameters.topK",
            1, )
        self.batch_size = envs.get_global_env(
            "dataset.dataset_infer.batch_size", 1)

    def net(self, input, is_infer=False):
        if not is_infer:
            return self.train_net(input)
        else:
            return self.infer_net(input)

    def train_net(self, input):
        self.tdm_net(input)
C
chengmo 已提交
66
        self.create_info()
C
chengmo 已提交
67 68 69
        self.avg_loss()
        self.metrics()

C
Chengmo 已提交
70
    def infer_net(self, input):
C
chengmo 已提交
71
        self.create_first_layer()
C
Chengmo 已提交
72 73 74 75 76 77 78
        self.tdm_infer_net(input)

    def input_data(self, is_infer=False, **kwargs):
        if not is_infer:
            return self.train_input()
        else:
            return self.infer_input()
C
chengmo 已提交
79 80 81 82 83 84 85

    """ -------- Train network detail ------- """

    def train_input(self):
        input_emb = fluid.data(
            name="input_emb",
            shape=[None, self.input_emb_size],
T
tangwei 已提交
86
            dtype="float32", )
C
chengmo 已提交
87 88 89 90

        item_label = fluid.data(
            name="item_label",
            shape=[None, 1],
T
tangwei 已提交
91
            dtype="int64", )
C
chengmo 已提交
92

C
Chengmo 已提交
93
        return [input_emb, item_label]
C
chengmo 已提交
94

C
Chengmo 已提交
95
    def tdm_net(self, input):
C
chengmo 已提交
96 97 98 99 100
        """
        tdm训练网络的主要流程部分
        """
        is_distributed = True if envs.get_trainer() == "CtrTrainer" else False

C
Chengmo 已提交
101 102
        input_emb = input[0]
        item_label = input[1]
C
chengmo 已提交
103 104 105 106 107

        # 根据输入的item的正样本在给定的树上进行负采样
        # sample_nodes 是采样的node_id的结果,包含正负样本
        # sample_label 是采样的node_id对应的正负标签
        # sample_mask 是为了保持tensor维度一致,padding部分的标签,若为0,则是padding的虚拟node_id
C
Chengmo 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

        if self.check_version():
            with fluid.device_guard("cpu"):
                sample_nodes, sample_label, sample_mask = fluid.contrib.layers.tdm_sampler(
                    x=item_label,
                    neg_samples_num_list=self.neg_sampling_list,
                    layer_node_num_list=self.layer_node_num_list,
                    leaf_node_num=self.leaf_node_nums,
                    tree_travel_attr=fluid.ParamAttr(name="TDM_Tree_Travel"),
                    tree_layer_attr=fluid.ParamAttr(name="TDM_Tree_Layer"),
                    output_positive=self.output_positive,
                    output_list=True,
                    seed=0,
                    tree_dtype='int64',
                    dtype='int64')
        else:
            sample_nodes, sample_label, sample_mask = fluid.contrib.layers.tdm_sampler(
                x=item_label,
                neg_samples_num_list=self.neg_sampling_list,
                layer_node_num_list=self.layer_node_num_list,
                leaf_node_num=self.leaf_node_nums,
                tree_travel_attr=fluid.ParamAttr(name="TDM_Tree_Travel"),
                tree_layer_attr=fluid.ParamAttr(name="TDM_Tree_Layer"),
                output_positive=self.output_positive,
                output_list=True,
                seed=0,
                tree_dtype='int64',
                dtype='int64')
C
chengmo 已提交
136

M
MrChengmo 已提交
137 138 139 140 141
        sample_nodes = [
            fluid.layers.reshape(sample_nodes[i], [-1, 1])
            for i in range(self.max_layers)
        ]

C
chengmo 已提交
142 143
        # 查表得到每个节点的Embedding
        sample_nodes_emb = [
M
MrChengmo 已提交
144
            fluid.layers.embedding(
C
chengmo 已提交
145 146 147
                input=sample_nodes[i],
                is_sparse=True,
                size=[self.node_nums, self.node_emb_size],
T
tangwei 已提交
148 149
                param_attr=fluid.ParamAttr(name="TDM_Tree_Emb"))
            for i in range(self.max_layers)
C
chengmo 已提交
150 151 152 153
        ]

        # 此处进行Reshape是为了之后层次化的分类器训练
        sample_nodes_emb = [
T
tangwei 已提交
154 155 156 157
            fluid.layers.reshape(sample_nodes_emb[i], [
                -1, self.neg_sampling_list[i] + self.output_positive,
                self.node_emb_size
            ]) for i in range(self.max_layers)
C
chengmo 已提交
158 159 160 161 162 163
        ]

        # 对输入的input_emb进行转换,使其维度与node_emb维度一致
        input_trans_emb = self.input_trans_layer(input_emb)

        # 分类器的主体网络,分别训练不同层次的分类器
T
tangwei 已提交
164 165
        layer_classifier_res = self.classifier_layer(input_trans_emb,
                                                     sample_nodes_emb)
C
chengmo 已提交
166 167 168

        # 最后的概率判别FC,将所有层次的node分类结果放到一起以相同的标准进行判别
        # 考虑到树极大可能不平衡,有些item不在最后一层,所以需要这样的机制保证每个item都有机会被召回
T
tangwei 已提交
169 170 171 172 173 174 175
        tdm_fc = fluid.layers.fc(
            input=layer_classifier_res,
            size=2,
            act=None,
            num_flatten_dims=2,
            param_attr=fluid.ParamAttr(name="tdm.cls_fc.weight"),
            bias_attr=fluid.ParamAttr(name="tdm.cls_fc.bias"))
C
chengmo 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

        # 将loss打平,放到一起计算整体网络的loss
        tdm_fc_re = fluid.layers.reshape(tdm_fc, [-1, 2])

        # 若想对各个层次的loss辅以不同的权重,则在此处无需concat
        # 支持各个层次分别计算loss,再乘相应的权重
        sample_label = fluid.layers.concat(sample_label, axis=1)
        labels_reshape = fluid.layers.reshape(sample_label, [-1, 1])
        labels_reshape.stop_gradient = True

        # 计算整体的loss并得到softmax的输出
        cost, softmax_prob = fluid.layers.softmax_with_cross_entropy(
            logits=tdm_fc_re, label=labels_reshape, return_softmax=True)

        # 通过mask过滤掉虚拟节点的loss
        sample_mask = fluid.layers.concat(sample_mask, axis=1)
        mask_reshape = fluid.layers.reshape(sample_mask, [-1, 1])
        mask_index = fluid.layers.where(mask_reshape != 0)
        mask_index.stop_gradient = True

        self.mask_cost = fluid.layers.gather_nd(cost, mask_index)
C
chengmo 已提交
197 198

        softmax_prob = fluid.layers.unsqueeze(input=softmax_prob, axes=[1])
C
chengmo 已提交
199 200 201 202 203
        self.mask_prob = fluid.layers.gather_nd(softmax_prob, mask_index)
        self.mask_label = fluid.layers.gather_nd(labels_reshape, mask_index)

        self._predict = self.mask_prob

C
chengmo 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216
    def create_info(self):
        fluid.default_startup_program().global_block().create_var(
            name="TDM_Tree_Info",
            dtype=fluid.core.VarDesc.VarType.INT32,
            shape=[self.node_nums, 3 + self.child_nums],
            persistable=True,
            initializer=fluid.initializer.ConstantInitializer(0))
        fluid.default_main_program().global_block().create_var(
            name="TDM_Tree_Info",
            dtype=fluid.core.VarDesc.VarType.INT32,
            shape=[self.node_nums, 3 + self.child_nums],
            persistable=True)

C
chengmo 已提交
217 218 219 220 221 222 223
    def avg_loss(self):
        avg_cost = fluid.layers.reduce_mean(self.mask_cost)
        self._cost = avg_cost

    def metrics(self):
        auc, batch_auc, _ = fluid.layers.auc(input=self._predict,
                                             label=self.mask_label,
T
tangwei 已提交
224
                                             num_thresholds=2**12,
C
chengmo 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
                                             slide_steps=20)
        self._metrics["AUC"] = auc
        self._metrics["BATCH_AUC"] = batch_auc
        self._metrics["BATCH_LOSS"] = self._cost

    def input_trans_layer(self, input_emb):
        """
        输入侧训练组网
        """
        # 将input映射到与node相同的维度
        input_fc_out = fluid.layers.fc(
            input=input_emb,
            size=self.node_emb_size,
            act=None,
            param_attr=fluid.ParamAttr(name="trans.input_fc.weight"),
T
tangwei 已提交
240
            bias_attr=fluid.ParamAttr(name="trans.input_fc.bias"), )
C
chengmo 已提交
241 242 243 244 245 246 247 248 249

        # 将input_emb映射到各个不同层次的向量表示空间
        input_layer_fc_out = [
            fluid.layers.fc(
                input=input_fc_out,
                size=self.node_emb_size,
                act=self.act,
                param_attr=fluid.ParamAttr(
                    name="trans.layer_fc.weight." + str(i)),
T
tangwei 已提交
250 251 252
                bias_attr=fluid.ParamAttr(
                    name="trans.layer_fc.bias." + str(i)), )
            for i in range(self.max_layers)
C
chengmo 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        ]

        return input_layer_fc_out

    def _expand_layer(self, input_layer, node, layer_idx):
        # 扩展input的输入,使数量与node一致,
        # 也可以以其他broadcast的操作进行代替
        # 同时兼容了训练组网与预测组网
        input_layer_unsequeeze = fluid.layers.unsqueeze(
            input=input_layer, axes=[1])
        if not isinstance(node, list):
            input_layer_expand = fluid.layers.expand(
                input_layer_unsequeeze, expand_times=[1, node.shape[1], 1])
        else:
            input_layer_expand = fluid.layers.expand(
T
tangwei 已提交
268 269
                input_layer_unsequeeze,
                expand_times=[1, node[layer_idx].shape[1], 1])
C
chengmo 已提交
270 271 272 273 274
        return input_layer_expand

    def classifier_layer(self, input, node):
        # 扩展input,使维度与node匹配
        input_expand = [
T
tangwei 已提交
275 276
            self._expand_layer(input[i], node, i)
            for i in range(self.max_layers)
C
chengmo 已提交
277 278 279 280 281
        ]

        # 将input_emb与node_emb concat到一起过分类器FC
        input_node_concat = [
            fluid.layers.concat(
T
tangwei 已提交
282 283
                input=[input_expand[i], node[i]], axis=2)
            for i in range(self.max_layers)
C
chengmo 已提交
284 285 286 287 288 289 290 291
        ]
        hidden_states_fc = [
            fluid.layers.fc(
                input=input_node_concat[i],
                size=self.node_emb_size,
                num_flatten_dims=2,
                act=self.act,
                param_attr=fluid.ParamAttr(
T
for mat  
tangwei 已提交
292
                    name="cls.concat_fc.weight." + str(i)),
T
tangwei 已提交
293 294
                bias_attr=fluid.ParamAttr(name="cls.concat_fc.bias." + str(i)))
            for i in range(self.max_layers)
C
chengmo 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308
        ]

        # 如果将所有层次的node放到一起计算loss,则需要在此处concat
        # 将分类器结果以batch为准绳concat到一起,而不是layer
        # 维度形如[batch_size, total_node_num, node_emb_size]
        hidden_states_concat = fluid.layers.concat(hidden_states_fc, axis=1)
        return hidden_states_concat

    """ -------- Infer network detail ------- """

    def infer_input(self):
        input_emb = fluid.layers.data(
            name="input_emb",
            shape=[self.input_emb_size],
T
tangwei 已提交
309
            dtype="float32", )
C
chengmo 已提交
310

C
Chengmo 已提交
311
        return [input_emb]
C
chengmo 已提交
312 313 314 315

    def get_layer_list(self):
        """get layer list from layer_list.txt"""
        layer_list = []
C
chengmo 已提交
316
        with open(self.tree_layer_path, 'r') as fin:
C
chengmo 已提交
317 318 319 320 321 322 323
            for line in fin.readlines():
                l = []
                layer = (line.split('\n'))[0].split(',')
                for node in layer:
                    if node:
                        l.append(node)
                layer_list.append(l)
C
chengmo 已提交
324
        self.layer_list = layer_list
C
chengmo 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337

    def create_first_layer(self):
        """decide which layer to start infer"""
        self.get_layer_list()
        first_layer_id = 0
        for idx, layer_node in enumerate(self.layer_node_num_list):
            if layer_node >= self.topK:
                first_layer_id = idx
                break
        first_layer_node = self.layer_list[first_layer_id]
        self.first_layer_idx = first_layer_id
        node_list = []
        mask_list = []
C
chengmo 已提交
338
        for id in first_layer_node:
T
tangwei 已提交
339 340 341 342 343 344
            node_list.append(
                fluid.layers.fill_constant(
                    [self.batch_size, 1], value=int(id), dtype='int64'))
            mask_list.append(
                fluid.layers.fill_constant(
                    [self.batch_size, 1], value=0, dtype='int64'))
C
chengmo 已提交
345 346 347
        self.first_layer_node = fluid.layers.concat(node_list, axis=1)
        self.first_layer_node_mask = fluid.layers.concat(mask_list, axis=1)

C
Chengmo 已提交
348
    def tdm_infer_net(self, input):
C
chengmo 已提交
349 350 351 352 353 354 355 356
        """
        infer的主要流程
        infer的基本逻辑是:从上层开始(具体层idx由树结构及TopK值决定)
        1、依次通过每一层分类器,得到当前层输入的指定节点的prob
        2、根据prob值大小,取topK的节点,取这些节点的孩子节点作为下一层的输入
        3、循环1、2步骤,遍历完所有层,得到每一层筛选结果的集合
        4、将筛选结果集合中的叶子节点,拿出来再做一次topK,得到最终的召回输出
        """
C
Chengmo 已提交
357
        input_emb = input[0]
C
chengmo 已提交
358 359 360 361 362
        node_score = []
        node_list = []

        current_layer_node = self.first_layer_node
        current_layer_node_mask = self.first_layer_node_mask
C
chengmo 已提交
363
        input_trans_emb = self.input_fc_infer(input_emb)
C
chengmo 已提交
364 365 366 367 368 369 370

        for layer_idx in range(self.first_layer_idx, self.max_layers):
            # 确定当前层的需要计算的节点数
            if layer_idx == self.first_layer_idx:
                current_layer_node_num = self.first_layer_node.shape[1]
            else:
                current_layer_node_num = current_layer_node.shape[1] * \
C
Chengmo 已提交
371
                    current_layer_node.shape[2]
C
chengmo 已提交
372 373 374 375 376 377 378

            current_layer_node = fluid.layers.reshape(
                current_layer_node, [-1, current_layer_node_num])
            current_layer_node_mask = fluid.layers.reshape(
                current_layer_node_mask, [-1, current_layer_node_num])
            node_emb = fluid.embedding(
                input=current_layer_node,
C
chengmo 已提交
379
                size=[self.node_nums, self.node_emb_size],
C
chengmo 已提交
380 381
                param_attr=fluid.ParamAttr(name="TDM_Tree_Emb"))

T
tangwei 已提交
382
            input_fc_out = self.layer_fc_infer(input_trans_emb, layer_idx)
C
chengmo 已提交
383 384

            # 过每一层的分类器
T
tangwei 已提交
385 386
            layer_classifier_res = self.classifier_layer_infer(
                input_fc_out, node_emb, layer_idx)
C
chengmo 已提交
387 388

            # 过最终的判别分类器
T
tangwei 已提交
389 390 391 392 393 394 395
            tdm_fc = fluid.layers.fc(
                input=layer_classifier_res,
                size=2,
                act=None,
                num_flatten_dims=2,
                param_attr=fluid.ParamAttr(name="tdm.cls_fc.weight"),
                bias_attr=fluid.ParamAttr(name="tdm.cls_fc.bias"))
C
chengmo 已提交
396 397 398 399

            prob = fluid.layers.softmax(tdm_fc)
            positive_prob = fluid.layers.slice(
                prob, axes=[2], starts=[1], ends=[2])
T
tangwei 已提交
400 401
            prob_re = fluid.layers.reshape(positive_prob,
                                           [-1, current_layer_node_num])
C
chengmo 已提交
402 403 404

            # 过滤掉padding产生的无效节点(node_id=0)
            node_zero_mask = fluid.layers.cast(current_layer_node, 'bool')
C
Chengmo 已提交
405
            node_zero_mask = fluid.layers.cast(node_zero_mask, 'float32')
C
chengmo 已提交
406 407 408 409 410 411 412 413 414 415
            prob_re = prob_re * node_zero_mask

            # 在当前层的分类结果中取topK,并将对应的score及node_id保存下来
            k = self.topK
            if current_layer_node_num < self.topK:
                k = current_layer_node_num
            _, topk_i = fluid.layers.topk(prob_re, k)

            # index_sample op根据下标索引tensor对应位置的值
            # 若paddle版本>2.0,调用方式为paddle.index_sample
T
tangwei 已提交
416 417
            top_node = fluid.contrib.layers.index_sample(current_layer_node,
                                                         topk_i)
C
chengmo 已提交
418
            prob_re_mask = prob_re * current_layer_node_mask  # 过滤掉非叶子节点
T
tangwei 已提交
419 420
            topk_value = fluid.contrib.layers.index_sample(prob_re_mask,
                                                           topk_i)
C
chengmo 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            node_score.append(topk_value)
            node_list.append(top_node)

            # 取当前层topK结果的孩子节点,作为下一层的输入
            if layer_idx < self.max_layers - 1:
                # tdm_child op 根据输入返回其 child 及 child_mask
                # 若child是叶子节点,则child_mask=1,否则为0
                current_layer_node, current_layer_node_mask = \
                    fluid.contrib.layers.tdm_child(x=top_node,
                                                   node_nums=self.node_nums,
                                                   child_nums=self.child_nums,
                                                   param_attr=fluid.ParamAttr(
                                                       name="TDM_Tree_Info"),
                                                   dtype='int64')

        total_node_score = fluid.layers.concat(node_score, axis=1)
        total_node = fluid.layers.concat(node_list, axis=1)

        # 考虑到树可能是不平衡的,计算所有层的叶子节点的topK
        res_score, res_i = fluid.layers.topk(total_node_score, self.topK)
        res_layer_node = fluid.contrib.layers.index_sample(total_node, res_i)
        res_node = fluid.layers.reshape(res_layer_node, [-1, self.topK, 1])

        # 利用Tree_info信息,将node_id转换为item_id
T
tangwei 已提交
445 446
        tree_info = fluid.default_main_program().global_block().var(
            "TDM_Tree_Info")
C
chengmo 已提交
447 448 449 450 451
        res_node_emb = fluid.layers.gather_nd(tree_info, res_node)

        res_item = fluid.layers.slice(
            res_node_emb, axes=[2], starts=[0], ends=[1])
        self.res_item_re = fluid.layers.reshape(res_item, [-1, self.topK])
C
chengmo 已提交
452
        self._infer_results["item"] = self.res_item_re
C
chengmo 已提交
453 454 455 456 457 458 459 460 461 462 463

    def input_fc_infer(self, input_emb):
        """
        输入侧预测组网第一部分,将input转换为node同维度
        """
        # 组网与训练时保持一致
        input_fc_out = fluid.layers.fc(
            input=input_emb,
            size=self.node_emb_size,
            act=None,
            param_attr=fluid.ParamAttr(name="trans.input_fc.weight"),
T
tangwei 已提交
464
            bias_attr=fluid.ParamAttr(name="trans.input_fc.bias"), )
C
chengmo 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478
        return input_fc_out

    def layer_fc_infer(self, input_fc_out, layer_idx):
        """
        输入侧预测组网第二部分,将input映射到不同层次的向量空间
        """
        # 组网与训练保持一致,通过layer_idx指定不同层的FC
        input_layer_fc_out = fluid.layers.fc(
            input=input_fc_out,
            size=self.node_emb_size,
            act=self.act,
            param_attr=fluid.ParamAttr(
                name="trans.layer_fc.weight." + str(layer_idx)),
            bias_attr=fluid.ParamAttr(
T
tangwei 已提交
479
                name="trans.layer_fc.bias." + str(layer_idx)), )
C
chengmo 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
        return input_layer_fc_out

    def classifier_layer_infer(self, input, node, layer_idx):
        # 为infer组网提供的简化版classifier,通过给定layer_idx调用不同层的分类器

        # 同样需要保持input与node的维度匹配
        input_expand = self._expand_layer(input, node, layer_idx)

        # 与训练网络相同的concat逻辑
        input_node_concat = fluid.layers.concat(
            input=[input_expand, node], axis=2)

        # 根据参数名param_attr调用不同的层的FC
        hidden_states_fc = fluid.layers.fc(
            input=input_node_concat,
            size=self.node_emb_size,
            num_flatten_dims=2,
            act=self.act,
            param_attr=fluid.ParamAttr(
T
for mat  
tangwei 已提交
499
                name="cls.concat_fc.weight." + str(layer_idx)),
T
tangwei 已提交
500 501
            bias_attr=fluid.ParamAttr(
                name="cls.concat_fc.bias." + str(layer_idx)))
C
chengmo 已提交
502
        return hidden_states_fc
C
Chengmo 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

    def check_version(self):
        """
        Log error and exit when the installed version of paddlepaddle is
        not satisfied.
        """
        err = "TDM-GPU need Paddle version 1.8 or higher is required, " \
            "or a suitable develop version is satisfied as well. \n" \
            "Please make sure the version is good with your code." \

        try:
            fluid.require_version('1.8.0')
            return True
        except Exception as e:
            print(err)
            return False