提交 dac5e175 编写于 作者: 文幕地方's avatar 文幕地方

update doc

上级 bdf4e2f8
...@@ -2,14 +2,15 @@ English | [简体中文](README_ch.md) ...@@ -2,14 +2,15 @@ English | [简体中文](README_ch.md)
# Table Recognition # Table Recognition
- [1. pipeline](#1-pipeline) - [Table Recognition](#table-recognition)
- [2. Performance](#2-performance) - [1. pipeline](#1-pipeline)
- [3. Result](#3-result) - [2. Performance](#2-performance)
- [4. How to use](#4-how-to-use) - [3. Result](#3-result)
- [4.1 Quick start](#41-quick-start) - [4. How to use](#4-how-to-use)
- [4.2 Train](#42-train) - [4.1 Quick start](#41-quick-start)
- [4.3 Calculate TEDS](#43-calculate-teds) - [4.2 Training, Evaluation and Inference](#42-training-evaluation-and-inference)
- [5. Reference](#5-reference) - [4.3 Calculate TEDS](#43-calculate-teds)
- [5. Reference](#5-reference)
## 1. pipeline ## 1. pipeline
...@@ -51,6 +52,8 @@ The performance indicators are explained as follows: ...@@ -51,6 +52,8 @@ The performance indicators are explained as follows:
### 4.1 Quick start ### 4.1 Quick start
PP-Structure currently provides table recognition models in both Chinese and English. For the model link, see [models_list](../docs/models_list.md). The following takes the Chinese table recognition model as an example to introduce how to recognize a table.
Use the following commands to quickly complete the identification of a table. Use the following commands to quickly complete the identification of a table.
```python ```python
...@@ -83,7 +86,7 @@ After the operation is completed, the excel table of each image will be saved to ...@@ -83,7 +86,7 @@ After the operation is completed, the excel table of each image will be saved to
1. If you want to use the English table recognition model, you need to download the English text detection and recognition model and the English table recognition model in [models_list](../docs/models_list_en.md), and replace `table_structure_dict_ch.txt` with `table_structure_dict.txt`. 1. If you want to use the English table recognition model, you need to download the English text detection and recognition model and the English table recognition model in [models_list](../docs/models_list_en.md), and replace `table_structure_dict_ch.txt` with `table_structure_dict.txt`.
2. To use the TableRec-RARE model, you need to replace `table_structure_dict_ch.txt` with `table_structure_dict.txt`, and add parameter `--merge_no_span_structure=False` 2. To use the TableRec-RARE model, you need to replace `table_structure_dict_ch.txt` with `table_structure_dict.txt`, and add parameter `--merge_no_span_structure=False`
### 4.2 Train ### 4.2 Training, Evaluation and Inference
The training, evaluation and inference process of the text detection model can be referred to [detection](../../doc/doc_en/detection_en.md) The training, evaluation and inference process of the text detection model can be referred to [detection](../../doc/doc_en/detection_en.md)
...@@ -124,11 +127,11 @@ Evaluate on the PubLatNet dataset using the English model ...@@ -124,11 +127,11 @@ Evaluate on the PubLatNet dataset using the English model
cd PaddleOCR/ppstructure cd PaddleOCR/ppstructure
# Download the model # Download the model
mkdir inference && cd inference mkdir inference && cd inference
# Download the detection model of the ultra-lightweight table English OCR model and unzip it # Download the text detection model trained on the PubTabNet dataset and unzip it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar && tar xf en_ppocr_mobile_v2.0_table_det_infer.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar && tar xf en_ppocr_mobile_v2.0_table_det_infer.tar
# Download the recognition model of the ultra-lightweight table English OCR model and unzip it # Download the text recognition model trained on the PubTabNet dataset and unzip it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar && tar xf en_ppocr_mobile_v2.0_table_rec_infer.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar && tar xf en_ppocr_mobile_v2.0_table_rec_infer.tar
# Download the PP-Structurev2 English table recognition model and unzip it # Download the table recognition model trained on the PubTabNet dataset and unzip it
wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf en_ppstructure_mobile_v2.0_SLANet_infer.tar wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf en_ppstructure_mobile_v2.0_SLANet_infer.tar
cd .. cd ..
......
...@@ -7,7 +7,7 @@ ...@@ -7,7 +7,7 @@
- [3. 效果演示](#3-效果演示) - [3. 效果演示](#3-效果演示)
- [4. 使用](#4-使用) - [4. 使用](#4-使用)
- [4.1 快速开始](#41-快速开始) - [4.1 快速开始](#41-快速开始)
- [4.2 训练](#42-训练) - [4.2 模型训练、评估与推理](#42-模型训练评估与推理)
- [4.3 计算TEDS](#43-计算teds) - [4.3 计算TEDS](#43-计算teds)
- [5. Reference](#5-reference) - [5. Reference](#5-reference)
...@@ -57,6 +57,8 @@ ...@@ -57,6 +57,8 @@
### 4.1 快速开始 ### 4.1 快速开始
PP-Structure目前提供了中英文两种语言的表格识别模型,模型链接见 [models_list](../docs/models_list.md)。下面以中文表格识别模型为例,介绍如何识别一张表格。
使用如下命令即可快速完成一张表格的识别。 使用如下命令即可快速完成一张表格的识别。
```python ```python
cd PaddleOCR/ppstructure cd PaddleOCR/ppstructure
...@@ -83,10 +85,10 @@ python table/predict_table.py \ ...@@ -83,10 +85,10 @@ python table/predict_table.py \
运行完成后,每张图片的excel表格会保存到output字段指定的目录下,同时在该目录下回生产一个html文件,用于可视化查看单元格坐标和识别的表格。 运行完成后,每张图片的excel表格会保存到output字段指定的目录下,同时在该目录下回生产一个html文件,用于可视化查看单元格坐标和识别的表格。
**NOTE** **NOTE**
1. 如果想使用英文模型,需要在[models_list](../docs/models_list.md)中下载英文文字检测识别模型和英文表格识别模型,同时替换`table_structure_dict_ch.txt``table_structure_dict.txt`即可。 1. 如果想使用英文模型,需要在 [models_list](../docs/models_list.md) 中下载英文文字检测识别模型和英文表格识别模型,同时替换`table_structure_dict_ch.txt``table_structure_dict.txt`即可。
2. 如需使用TableRec-RARE模型,需要替换`table_structure_dict_ch.txt``table_structure_dict.txt`,同时参数`--merge_no_span_structure=False` 2. 如需使用TableRec-RARE模型,需要替换`table_structure_dict_ch.txt``table_structure_dict.txt`,同时参数`--merge_no_span_structure=False`
### 4.2 训练 ### 4.2 模型训练、评估与推理
文本检测模型的训练、评估和推理流程可参考 [detection](../../doc/doc_ch/detection.md) 文本检测模型的训练、评估和推理流程可参考 [detection](../../doc/doc_ch/detection.md)
...@@ -128,11 +130,11 @@ python3 table/eval_table.py \ ...@@ -128,11 +130,11 @@ python3 table/eval_table.py \
cd PaddleOCR/ppstructure cd PaddleOCR/ppstructure
# 下载模型 # 下载模型
mkdir inference && cd inference mkdir inference && cd inference
# 下载超轻量级表格英文OCR模型的检测模型并解压 # 下载基于PubTabNet数据集训练的文本检测模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar && tar xf en_ppocr_mobile_v2.0_table_det_infer.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar && tar xf en_ppocr_mobile_v2.0_table_det_infer.tar
# 下载超轻量级表格英文OCR模型的识别模型并解压 # 下载基于PubTabNet数据集训练的文本识别模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar && tar xf en_ppocr_mobile_v2.0_table_rec_infer.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar && tar xf en_ppocr_mobile_v2.0_table_rec_infer.tar
# 下载PP-Structurev2英文表格识别模型并解压 # 下载基于PubTabNet数据集训练的表格识别模型并解压
wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf en_ppstructure_mobile_v2.0_SLANet_infer.tar wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf en_ppstructure_mobile_v2.0_SLANet_infer.tar
cd .. cd ..
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册