diff --git a/ppstructure/table/README.md b/ppstructure/table/README.md index bbfd81b8e39c1170ffd6927e13199ec594bfe7e9..42ab29d98ec4ea576cf0ebbf635aef46fbcc9b09 100644 --- a/ppstructure/table/README.md +++ b/ppstructure/table/README.md @@ -2,14 +2,15 @@ English | [简体中文](README_ch.md) # Table Recognition -- [1. pipeline](#1-pipeline) -- [2. Performance](#2-performance) -- [3. Result](#3-result) -- [4. How to use](#4-how-to-use) - - [4.1 Quick start](#41-quick-start) - - [4.2 Train](#42-train) - - [4.3 Calculate TEDS](#43-calculate-teds) -- [5. Reference](#5-reference) +- [Table Recognition](#table-recognition) + - [1. pipeline](#1-pipeline) + - [2. Performance](#2-performance) + - [3. Result](#3-result) + - [4. How to use](#4-how-to-use) + - [4.1 Quick start](#41-quick-start) + - [4.2 Training, Evaluation and Inference](#42-training-evaluation-and-inference) + - [4.3 Calculate TEDS](#43-calculate-teds) + - [5. Reference](#5-reference) ## 1. pipeline @@ -51,6 +52,8 @@ The performance indicators are explained as follows: ### 4.1 Quick start +PP-Structure currently provides table recognition models in both Chinese and English. For the model link, see [models_list](../docs/models_list.md). The following takes the Chinese table recognition model as an example to introduce how to recognize a table. + Use the following commands to quickly complete the identification of a table. ```python @@ -83,7 +86,7 @@ After the operation is completed, the excel table of each image will be saved to 1. If you want to use the English table recognition model, you need to download the English text detection and recognition model and the English table recognition model in [models_list](../docs/models_list_en.md), and replace `table_structure_dict_ch.txt` with `table_structure_dict.txt`. 2. To use the TableRec-RARE model, you need to replace `table_structure_dict_ch.txt` with `table_structure_dict.txt`, and add parameter `--merge_no_span_structure=False` -### 4.2 Train +### 4.2 Training, Evaluation and Inference The training, evaluation and inference process of the text detection model can be referred to [detection](../../doc/doc_en/detection_en.md) @@ -124,11 +127,11 @@ Evaluate on the PubLatNet dataset using the English model cd PaddleOCR/ppstructure # Download the model mkdir inference && cd inference -# Download the detection model of the ultra-lightweight table English OCR model and unzip it +# Download the text detection model trained on the PubTabNet dataset and unzip it wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar && tar xf en_ppocr_mobile_v2.0_table_det_infer.tar -# Download the recognition model of the ultra-lightweight table English OCR model and unzip it +# Download the text recognition model trained on the PubTabNet dataset and unzip it wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar && tar xf en_ppocr_mobile_v2.0_table_rec_infer.tar -# Download the PP-Structurev2 English table recognition model and unzip it +# Download the table recognition model trained on the PubTabNet dataset and unzip it wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf en_ppstructure_mobile_v2.0_SLANet_infer.tar cd .. diff --git a/ppstructure/table/README_ch.md b/ppstructure/table/README_ch.md index 37cc7f660a8a5256e7b182049ef55756cfd49d29..8aa0dc8653223f9b84a283d8be2329f3c9d12b47 100644 --- a/ppstructure/table/README_ch.md +++ b/ppstructure/table/README_ch.md @@ -7,7 +7,7 @@ - [3. 效果演示](#3-效果演示) - [4. 使用](#4-使用) - [4.1 快速开始](#41-快速开始) - - [4.2 训练](#42-训练) + - [4.2 模型训练、评估与推理](#42-模型训练评估与推理) - [4.3 计算TEDS](#43-计算teds) - [5. Reference](#5-reference) @@ -57,6 +57,8 @@ ### 4.1 快速开始 +PP-Structure目前提供了中英文两种语言的表格识别模型,模型链接见 [models_list](../docs/models_list.md)。下面以中文表格识别模型为例,介绍如何识别一张表格。 + 使用如下命令即可快速完成一张表格的识别。 ```python cd PaddleOCR/ppstructure @@ -83,10 +85,10 @@ python table/predict_table.py \ 运行完成后,每张图片的excel表格会保存到output字段指定的目录下,同时在该目录下回生产一个html文件,用于可视化查看单元格坐标和识别的表格。 **NOTE** -1. 如果想使用英文模型,需要在[models_list](../docs/models_list.md)中下载英文文字检测识别模型和英文表格识别模型,同时替换`table_structure_dict_ch.txt`为`table_structure_dict.txt`即可。 +1. 如果想使用英文模型,需要在 [models_list](../docs/models_list.md) 中下载英文文字检测识别模型和英文表格识别模型,同时替换`table_structure_dict_ch.txt`为`table_structure_dict.txt`即可。 2. 如需使用TableRec-RARE模型,需要替换`table_structure_dict_ch.txt`为`table_structure_dict.txt`,同时参数`--merge_no_span_structure=False` -### 4.2 训练 +### 4.2 模型训练、评估与推理 文本检测模型的训练、评估和推理流程可参考 [detection](../../doc/doc_ch/detection.md) @@ -128,11 +130,11 @@ python3 table/eval_table.py \ cd PaddleOCR/ppstructure # 下载模型 mkdir inference && cd inference -# 下载超轻量级表格英文OCR模型的检测模型并解压 +# 下载基于PubTabNet数据集训练的文本检测模型并解压 wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar && tar xf en_ppocr_mobile_v2.0_table_det_infer.tar -# 下载超轻量级表格英文OCR模型的识别模型并解压 +# 下载基于PubTabNet数据集训练的文本识别模型并解压 wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar && tar xf en_ppocr_mobile_v2.0_table_rec_infer.tar -# 下载PP-Structurev2英文表格识别模型并解压 +# 下载基于PubTabNet数据集训练的表格识别模型并解压 wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf en_ppstructure_mobile_v2.0_SLANet_infer.tar cd ..