提交 c1fd4664 编写于 作者: T tink2123

add srn for dygraph

上级 de3e2e7c
Global: Global:
use_gpu: true use_gpu: True
epoch_num: 72 epoch_num: 72
log_smooth_window: 20 log_smooth_window: 20
print_batch_step: 10 print_batch_step: 10
...@@ -59,7 +59,7 @@ Metric: ...@@ -59,7 +59,7 @@ Metric:
Train: Train:
dataset: dataset:
name: LMDBDateSet name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/ data_dir: ./train_data/data_lmdb_release/training/
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
...@@ -78,7 +78,7 @@ Train: ...@@ -78,7 +78,7 @@ Train:
Eval: Eval:
dataset: dataset:
name: LMDBDateSet name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/ data_dir: ./train_data/data_lmdb_release/validation/
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
......
...@@ -58,7 +58,7 @@ Metric: ...@@ -58,7 +58,7 @@ Metric:
Train: Train:
dataset: dataset:
name: LMDBDateSet name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/ data_dir: ./train_data/data_lmdb_release/training/
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
...@@ -77,7 +77,7 @@ Train: ...@@ -77,7 +77,7 @@ Train:
Eval: Eval:
dataset: dataset:
name: LMDBDateSet name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/ data_dir: ./train_data/data_lmdb_release/validation/
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
......
...@@ -63,7 +63,7 @@ Metric: ...@@ -63,7 +63,7 @@ Metric:
Train: Train:
dataset: dataset:
name: LMDBDateSet name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/ data_dir: ./train_data/data_lmdb_release/training/
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
...@@ -82,7 +82,7 @@ Train: ...@@ -82,7 +82,7 @@ Train:
Eval: Eval:
dataset: dataset:
name: LMDBDateSet name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/ data_dir: ./train_data/data_lmdb_release/validation/
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
......
...@@ -58,7 +58,7 @@ Metric: ...@@ -58,7 +58,7 @@ Metric:
Train: Train:
dataset: dataset:
name: LMDBDateSet name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/ data_dir: ./train_data/data_lmdb_release/training/
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
...@@ -77,7 +77,7 @@ Train: ...@@ -77,7 +77,7 @@ Train:
Eval: Eval:
dataset: dataset:
name: LMDBDateSet name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/ data_dir: ./train_data/data_lmdb_release/validation/
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
......
...@@ -56,7 +56,7 @@ Metric: ...@@ -56,7 +56,7 @@ Metric:
Train: Train:
dataset: dataset:
name: LMDBDateSet name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/ data_dir: ./train_data/data_lmdb_release/training/
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
...@@ -75,7 +75,7 @@ Train: ...@@ -75,7 +75,7 @@ Train:
Eval: Eval:
dataset: dataset:
name: LMDBDateSet name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/ data_dir: ./train_data/data_lmdb_release/validation/
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
......
...@@ -62,7 +62,7 @@ Metric: ...@@ -62,7 +62,7 @@ Metric:
Train: Train:
dataset: dataset:
name: LMDBDateSet name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/ data_dir: ./train_data/data_lmdb_release/training/
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
...@@ -81,7 +81,7 @@ Train: ...@@ -81,7 +81,7 @@ Train:
Eval: Eval:
dataset: dataset:
name: LMDBDateSet name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/ data_dir: ./train_data/data_lmdb_release/validation/
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
......
Global:
use_gpu: True
epoch_num: 72
log_smooth_window: 20
print_batch_step: 5
save_model_dir: ./output/rec/srn
save_epoch_step: 3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
num_heads: 8
infer_mode: False
use_space_char: False
Optimizer:
name: Adam
lr:
name: Cosine
learning_rate: 0.0001
Architecture:
model_type: rec
algorithm: SRN
in_channels: 1
Transform:
Backbone:
name: ResNetFPN
Head:
name: SRNHead
max_text_length: 25
num_heads: 8
num_encoder_TUs: 2
num_decoder_TUs: 4
hidden_dims: 512
Loss:
name: SRNLoss
PostProcess:
name: SRNLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: LMDBDataSet
data_dir: ./train_data/srn_train_data_duiqi
#label_file_list: ["./train_data/ic15_data/1.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SRNLabelEncode: # Class handling label
- SRNRecResizeImg:
image_shape: [1, 64, 256]
- KeepKeys:
keep_keys: ['image',
'label',
'length',
'encoder_word_pos',
'gsrm_word_pos',
'gsrm_slf_attn_bias1',
'gsrm_slf_attn_bias2'] # dataloader will return list in this order
loader:
shuffle: False
batch_size_per_card: 64
drop_last: True
num_workers: 4
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/evaluation
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SRNLabelEncode: # Class handling label
- SRNRecResizeImg:
image_shape: [1, 64, 256]
- KeepKeys:
keep_keys: ['image',
'label',
'length',
'encoder_word_pos',
'gsrm_word_pos',
'gsrm_slf_attn_bias1',
'gsrm_slf_attn_bias2']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 32
num_workers: 4
...@@ -33,7 +33,7 @@ import paddle.distributed as dist ...@@ -33,7 +33,7 @@ import paddle.distributed as dist
from ppocr.data.imaug import transform, create_operators from ppocr.data.imaug import transform, create_operators
from ppocr.data.simple_dataset import SimpleDataSet from ppocr.data.simple_dataset import SimpleDataSet
from ppocr.data.lmdb_dataset import LMDBDateSet from ppocr.data.lmdb_dataset import LMDBDataSet
__all__ = ['build_dataloader', 'transform', 'create_operators'] __all__ = ['build_dataloader', 'transform', 'create_operators']
...@@ -54,7 +54,7 @@ signal.signal(signal.SIGTERM, term_mp) ...@@ -54,7 +54,7 @@ signal.signal(signal.SIGTERM, term_mp)
def build_dataloader(config, mode, device, logger): def build_dataloader(config, mode, device, logger):
config = copy.deepcopy(config) config = copy.deepcopy(config)
support_dict = ['SimpleDataSet', 'LMDBDateSet'] support_dict = ['SimpleDataSet', 'LMDBDataSet']
module_name = config[mode]['dataset']['name'] module_name = config[mode]['dataset']['name']
assert module_name in support_dict, Exception( assert module_name in support_dict, Exception(
'DataSet only support {}'.format(support_dict)) 'DataSet only support {}'.format(support_dict))
......
...@@ -21,7 +21,7 @@ from .make_border_map import MakeBorderMap ...@@ -21,7 +21,7 @@ from .make_border_map import MakeBorderMap
from .make_shrink_map import MakeShrinkMap from .make_shrink_map import MakeShrinkMap
from .random_crop_data import EastRandomCropData, PSERandomCrop from .random_crop_data import EastRandomCropData, PSERandomCrop
from .rec_img_aug import RecAug, RecResizeImg, ClsResizeImg from .rec_img_aug import RecAug, RecResizeImg, ClsResizeImg, SRNRecResizeImg
from .randaugment import RandAugment from .randaugment import RandAugment
from .operators import * from .operators import *
from .label_ops import * from .label_ops import *
......
...@@ -98,6 +98,8 @@ class BaseRecLabelEncode(object): ...@@ -98,6 +98,8 @@ class BaseRecLabelEncode(object):
support_character_type, character_type) support_character_type, character_type)
self.max_text_len = max_text_length self.max_text_len = max_text_length
self.beg_str = "sos"
self.end_str = "eos"
if character_type == "en": if character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str) dict_character = list(self.character_str)
...@@ -213,3 +215,49 @@ class AttnLabelEncode(BaseRecLabelEncode): ...@@ -213,3 +215,49 @@ class AttnLabelEncode(BaseRecLabelEncode):
assert False, "Unsupport type %s in get_beg_end_flag_idx" \ assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end % beg_or_end
return idx return idx
class SRNLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length=25,
character_dict_path=None,
character_type='en',
use_space_char=False,
**kwargs):
super(SRNLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def add_special_char(self, dict_character):
dict_character = dict_character + [self.beg_str, self.end_str]
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
char_num = len(self.character_str)
if text is None:
return None
if len(text) > self.max_text_len:
return None
data['length'] = np.array(len(text))
text = text + [char_num] * (self.max_text_len - len(text))
data['label'] = np.array(text)
return data
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
...@@ -12,20 +12,6 @@ ...@@ -12,20 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math import math
import cv2 import cv2
import numpy as np import numpy as np
...@@ -77,6 +63,26 @@ class RecResizeImg(object): ...@@ -77,6 +63,26 @@ class RecResizeImg(object):
return data return data
class SRNRecResizeImg(object):
def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
self.image_shape = image_shape
self.num_heads = num_heads
self.max_text_length = max_text_length
def __call__(self, data):
img = data['image']
norm_img = resize_norm_img_srn(img, self.image_shape)
data['image'] = norm_img
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)
data['encoder_word_pos'] = encoder_word_pos
data['gsrm_word_pos'] = gsrm_word_pos
data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
return data
def resize_norm_img(img, image_shape): def resize_norm_img(img, image_shape):
imgC, imgH, imgW = image_shape imgC, imgH, imgW = image_shape
h = img.shape[0] h = img.shape[0]
...@@ -103,7 +109,7 @@ def resize_norm_img(img, image_shape): ...@@ -103,7 +109,7 @@ def resize_norm_img(img, image_shape):
def resize_norm_img_chinese(img, image_shape): def resize_norm_img_chinese(img, image_shape):
imgC, imgH, imgW = image_shape imgC, imgH, imgW = image_shape
# todo: change to 0 and modified image shape # todo: change to 0 and modified image shape
max_wh_ratio = 0 max_wh_ratio = imgW * 1.0 / imgH
h, w = img.shape[0], img.shape[1] h, w = img.shape[0], img.shape[1]
ratio = w * 1.0 / h ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, ratio) max_wh_ratio = max(max_wh_ratio, ratio)
...@@ -126,6 +132,60 @@ def resize_norm_img_chinese(img, image_shape): ...@@ -126,6 +132,60 @@ def resize_norm_img_chinese(img, image_shape):
return padding_im return padding_im
def resize_norm_img_srn(img, image_shape):
imgC, imgH, imgW = image_shape
img_black = np.zeros((imgH, imgW))
im_hei = img.shape[0]
im_wid = img.shape[1]
if im_wid <= im_hei * 1:
img_new = cv2.resize(img, (imgH * 1, imgH))
elif im_wid <= im_hei * 2:
img_new = cv2.resize(img, (imgH * 2, imgH))
elif im_wid <= im_hei * 3:
img_new = cv2.resize(img, (imgH * 3, imgH))
else:
img_new = cv2.resize(img, (imgW, imgH))
img_np = np.asarray(img_new)
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
img_black[:, 0:img_np.shape[1]] = img_np
img_black = img_black[:, :, np.newaxis]
row, col, c = img_black.shape
c = 1
return np.reshape(img_black, (c, row, col)).astype(np.float32)
def srn_other_inputs(image_shape, num_heads, max_text_length):
imgC, imgH, imgW = image_shape
feature_dim = int((imgH / 8) * (imgW / 8))
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
(feature_dim, 1)).astype('int64')
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
(max_text_length, 1)).astype('int64')
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
[1, max_text_length, max_text_length])
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
[num_heads, 1, 1]) * [-1e9]
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
[1, max_text_length, max_text_length])
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
[num_heads, 1, 1]) * [-1e9]
return [
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2
]
def flag(): def flag():
""" """
flag flag
......
...@@ -20,9 +20,9 @@ import cv2 ...@@ -20,9 +20,9 @@ import cv2
from .imaug import transform, create_operators from .imaug import transform, create_operators
class LMDBDateSet(Dataset): class LMDBDataSet(Dataset):
def __init__(self, config, mode, logger): def __init__(self, config, mode, logger):
super(LMDBDateSet, self).__init__() super(LMDBDataSet, self).__init__()
global_config = config['Global'] global_config = config['Global']
dataset_config = config[mode]['dataset'] dataset_config = config[mode]['dataset']
......
...@@ -23,11 +23,14 @@ def build_loss(config): ...@@ -23,11 +23,14 @@ def build_loss(config):
# rec loss # rec loss
from .rec_ctc_loss import CTCLoss from .rec_ctc_loss import CTCLoss
from .rec_srn_loss import SRNLoss
# cls loss # cls loss
from .cls_loss import ClsLoss from .cls_loss import ClsLoss
support_dict = ['DBLoss', 'EASTLoss', 'SASTLoss', 'CTCLoss', 'ClsLoss'] support_dict = [
'DBLoss', 'EASTLoss', 'SASTLoss', 'CTCLoss', 'ClsLoss', 'SRNLoss'
]
config = copy.deepcopy(config) config = copy.deepcopy(config)
module_name = config.pop('name') module_name = config.pop('name')
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
class SRNLoss(nn.Layer):
def __init__(self, **kwargs):
super(SRNLoss, self).__init__()
self.loss_func = paddle.nn.loss.CrossEntropyLoss(reduction="sum")
def forward(self, predicts, batch):
predict = predicts['predict']
word_predict = predicts['word_out']
gsrm_predict = predicts['gsrm_out']
label = batch[1]
casted_label = paddle.cast(x=label, dtype='int64')
casted_label = paddle.reshape(x=casted_label, shape=[-1, 1])
cost_word = self.loss_func(word_predict, label=casted_label)
cost_gsrm = self.loss_func(gsrm_predict, label=casted_label)
cost_vsfd = self.loss_func(predict, label=casted_label)
cost_word = paddle.reshape(x=paddle.sum(cost_word), shape=[1])
cost_gsrm = paddle.reshape(x=paddle.sum(cost_gsrm), shape=[1])
cost_vsfd = paddle.reshape(x=paddle.sum(cost_vsfd), shape=[1])
sum_cost = cost_word + cost_vsfd * 2.0 + cost_gsrm * 0.15
return {'loss': sum_cost, 'word_loss': cost_word, 'img_loss': cost_vsfd}
...@@ -26,6 +26,7 @@ def build_metric(config): ...@@ -26,6 +26,7 @@ def build_metric(config):
from .det_metric import DetMetric from .det_metric import DetMetric
from .rec_metric import RecMetric from .rec_metric import RecMetric
from .cls_metric import ClsMetric from .cls_metric import ClsMetric
from .rec_metric import RecMetric
support_dict = ['DetMetric', 'RecMetric', 'ClsMetric'] support_dict = ['DetMetric', 'RecMetric', 'ClsMetric']
......
...@@ -31,8 +31,6 @@ class RecMetric(object): ...@@ -31,8 +31,6 @@ class RecMetric(object):
if pred == target: if pred == target:
correct_num += 1 correct_num += 1
all_num += 1 all_num += 1
# if all_num < 10 and kwargs.get('show_str', False):
# print('{} -> {}'.format(pred, target))
self.correct_num += correct_num self.correct_num += correct_num
self.all_num += all_num self.all_num += all_num
self.norm_edit_dis += norm_edit_dis self.norm_edit_dis += norm_edit_dis
...@@ -48,7 +46,7 @@ class RecMetric(object): ...@@ -48,7 +46,7 @@ class RecMetric(object):
'norm_edit_dis': 0, 'norm_edit_dis': 0,
} }
""" """
acc = self.correct_num / self.all_num acc = 1.0 * self.correct_num / self.all_num
norm_edit_dis = 1 - self.norm_edit_dis / self.all_num norm_edit_dis = 1 - self.norm_edit_dis / self.all_num
self.reset() self.reset()
return {'acc': acc, 'norm_edit_dis': norm_edit_dis} return {'acc': acc, 'norm_edit_dis': norm_edit_dis}
......
...@@ -68,11 +68,14 @@ class BaseModel(nn.Layer): ...@@ -68,11 +68,14 @@ class BaseModel(nn.Layer):
config["Head"]['in_channels'] = in_channels config["Head"]['in_channels'] = in_channels
self.head = build_head(config["Head"]) self.head = build_head(config["Head"])
def forward(self, x): def forward(self, x, data=None):
if self.use_transform: if self.use_transform:
x = self.transform(x) x = self.transform(x)
x = self.backbone(x) x = self.backbone(x)
if self.use_neck: if self.use_neck:
x = self.neck(x) x = self.neck(x)
x = self.head(x) if data is None:
x = self.head(x)
else:
x = self.head(x, data)
return x return x
...@@ -24,7 +24,8 @@ def build_backbone(config, model_type): ...@@ -24,7 +24,8 @@ def build_backbone(config, model_type):
elif model_type == 'rec' or model_type == 'cls': elif model_type == 'rec' or model_type == 'cls':
from .rec_mobilenet_v3 import MobileNetV3 from .rec_mobilenet_v3 import MobileNetV3
from .rec_resnet_vd import ResNet from .rec_resnet_vd import ResNet
support_dict = ['MobileNetV3', 'ResNet', 'ResNet_FPN'] from .rec_resnet_fpn import ResNetFPN
support_dict = ['MobileNetV3', 'ResNet', 'ResNetFPN']
else: else:
raise NotImplementedError raise NotImplementedError
......
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import paddle.fluid as fluid
import paddle
import numpy as np
__all__ = ["ResNetFPN"]
class ResNetFPN(nn.Layer):
def __init__(self, in_channels=1, layers=50, **kwargs):
super(ResNetFPN, self).__init__()
supported_layers = {
18: {
'depth': [2, 2, 2, 2],
'block_class': BasicBlock
},
34: {
'depth': [3, 4, 6, 3],
'block_class': BasicBlock
},
50: {
'depth': [3, 4, 6, 3],
'block_class': BottleneckBlock
},
101: {
'depth': [3, 4, 23, 3],
'block_class': BottleneckBlock
},
152: {
'depth': [3, 8, 36, 3],
'block_class': BottleneckBlock
}
}
stride_list = [(2, 2), (2, 2), (1, 1), (1, 1)]
num_filters = [64, 128, 256, 512]
self.depth = supported_layers[layers]['depth']
self.F = []
self.conv = ConvBNLayer(
in_channels=in_channels,
out_channels=64,
kernel_size=7,
stride=2,
act="relu",
name="conv1")
self.block_list = []
in_ch = 64
if layers >= 50:
for block in range(len(self.depth)):
for i in range(self.depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
block_list = self.add_sublayer(
"bottleneckBlock_{}_{}".format(block, i),
BottleneckBlock(
in_channels=in_ch,
out_channels=num_filters[block],
stride=stride_list[block] if i == 0 else 1,
name=conv_name))
in_ch = num_filters[block] * 4
self.block_list.append(block_list)
self.F.append(block_list)
else:
for block in range(len(self.depth)):
for i in range(self.depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
if i == 0 and block != 0:
stride = (2, 1)
else:
stride = (1, 1)
basic_block = self.add_sublayer(
conv_name,
BasicBlock(
in_channels=in_ch,
out_channels=num_filters[block],
stride=stride_list[block] if i == 0 else 1,
is_first=block == i == 0,
name=conv_name))
in_ch = basic_block.out_channels
self.block_list.append(basic_block)
out_ch_list = [in_ch // 4, in_ch // 2, in_ch]
self.base_block = []
self.conv_trans = []
self.bn_block = []
for i in [-2, -3]:
in_channels = out_ch_list[i + 1] + out_ch_list[i]
self.base_block.append(
self.add_sublayer(
"F_{}_base_block_0".format(i),
nn.Conv2D(
in_channels=in_channels,
out_channels=out_ch_list[i],
kernel_size=1,
weight_attr=ParamAttr(trainable=True),
bias_attr=ParamAttr(trainable=True))))
self.base_block.append(
self.add_sublayer(
"F_{}_base_block_1".format(i),
nn.Conv2D(
in_channels=out_ch_list[i],
out_channels=out_ch_list[i],
kernel_size=3,
padding=1,
weight_attr=ParamAttr(trainable=True),
bias_attr=ParamAttr(trainable=True))))
self.base_block.append(
self.add_sublayer(
"F_{}_base_block_2".format(i),
nn.BatchNorm(
num_channels=out_ch_list[i],
act="relu",
param_attr=ParamAttr(trainable=True),
bias_attr=ParamAttr(trainable=True))))
self.base_block.append(
self.add_sublayer(
"F_{}_base_block_3".format(i),
nn.Conv2D(
in_channels=out_ch_list[i],
out_channels=512,
kernel_size=1,
bias_attr=ParamAttr(trainable=True),
weight_attr=ParamAttr(trainable=True))))
self.out_channels = 512
def __call__(self, x):
x = self.conv(x)
fpn_list = []
F = []
for i in range(len(self.depth)):
fpn_list.append(np.sum(self.depth[:i + 1]))
for i, block in enumerate(self.block_list):
x = block(x)
for number in fpn_list:
if i + 1 == number:
F.append(x)
base = F[-1]
j = 0
for i, block in enumerate(self.base_block):
if i % 3 == 0 and i < 6:
j = j + 1
b, c, w, h = F[-j - 1].shape
if [w, h] == list(base.shape[2:]):
base = base
else:
base = self.conv_trans[j - 1](base)
base = self.bn_block[j - 1](base)
base = paddle.concat([base, F[-j - 1]], axis=1)
base = block(base)
return base
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=2 if stride == (1, 1) else kernel_size,
dilation=2 if stride == (1, 1) else 1,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + '.conv2d.output.1.w_0'),
bias_attr=False, )
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name=name + '.output.1.w_0'),
bias_attr=ParamAttr(name=name + '.output.1.b_0'),
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + "_variance")
def __call__(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class ShortCut(nn.Layer):
def __init__(self, in_channels, out_channels, stride, name, is_first=False):
super(ShortCut, self).__init__()
self.use_conv = True
if in_channels != out_channels or stride != 1 or is_first == True:
if stride == (1, 1):
self.conv = ConvBNLayer(
in_channels, out_channels, 1, 1, name=name)
else: # stride==(2,2)
self.conv = ConvBNLayer(
in_channels, out_channels, 1, stride, name=name)
else:
self.use_conv = False
def forward(self, x):
if self.use_conv:
x = self.conv(x)
return x
class BottleneckBlock(nn.Layer):
def __init__(self, in_channels, out_channels, stride, name):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels * 4,
kernel_size=1,
act=None,
name=name + "_branch2c")
self.short = ShortCut(
in_channels=in_channels,
out_channels=out_channels * 4,
stride=stride,
is_first=False,
name=name + "_branch1")
self.out_channels = out_channels * 4
def forward(self, x):
y = self.conv0(x)
y = self.conv1(y)
y = self.conv2(y)
y = y + self.short(x)
y = F.relu(y)
return y
class BasicBlock(nn.Layer):
def __init__(self, in_channels, out_channels, stride, name, is_first):
super(BasicBlock, self).__init__()
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
act='relu',
stride=stride,
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
act=None,
name=name + "_branch2b")
self.short = ShortCut(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
is_first=is_first,
name=name + "_branch1")
self.out_channels = out_channels
def forward(self, x):
y = self.conv0(x)
y = self.conv1(y)
y = y + self.short(x)
return F.relu(y)
...@@ -23,10 +23,13 @@ def build_head(config): ...@@ -23,10 +23,13 @@ def build_head(config):
# rec head # rec head
from .rec_ctc_head import CTCHead from .rec_ctc_head import CTCHead
from .rec_srn_head import SRNHead
# cls head # cls head
from .cls_head import ClsHead from .cls_head import ClsHead
support_dict = ['DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead'] support_dict = [
'DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead', 'SRNHead'
]
module_name = config.pop('name') module_name = config.pop('name')
assert module_name in support_dict, Exception('head only support {}'.format( assert module_name in support_dict, Exception('head only support {}'.format(
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import paddle.fluid as fluid
import numpy as np
from .self_attention import WrapEncoderForFeature
from .self_attention import WrapEncoder
from paddle.static import Program
from ppocr.modeling.backbones.rec_resnet_fpn import ResNetFPN
import paddle.fluid.framework as framework
from collections import OrderedDict
gradient_clip = 10
class PVAM(nn.Layer):
def __init__(self, in_channels, char_num, max_text_length, num_heads,
num_encoder_tus, hidden_dims):
super(PVAM, self).__init__()
self.char_num = char_num
self.max_length = max_text_length
self.num_heads = num_heads
self.num_encoder_TUs = num_encoder_tus
self.hidden_dims = hidden_dims
# Transformer encoder
t = 256
c = 512
self.wrap_encoder_for_feature = WrapEncoderForFeature(
src_vocab_size=1,
max_length=t,
n_layer=self.num_encoder_TUs,
n_head=self.num_heads,
d_key=int(self.hidden_dims / self.num_heads),
d_value=int(self.hidden_dims / self.num_heads),
d_model=self.hidden_dims,
d_inner_hid=self.hidden_dims,
prepostprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da",
weight_sharing=True)
# PVAM
self.flatten0 = paddle.nn.Flatten(start_axis=0, stop_axis=1)
self.fc0 = paddle.nn.Linear(
in_features=in_channels,
out_features=in_channels, )
self.emb = paddle.nn.Embedding(
num_embeddings=self.max_length, embedding_dim=in_channels)
self.flatten1 = paddle.nn.Flatten(start_axis=0, stop_axis=2)
self.fc1 = paddle.nn.Linear(
in_features=in_channels, out_features=1, bias_attr=False)
def forward(self, inputs, encoder_word_pos, gsrm_word_pos):
b, c, h, w = inputs.shape
conv_features = paddle.reshape(inputs, shape=[-1, c, h * w])
conv_features = paddle.transpose(conv_features, perm=[0, 2, 1])
# transformer encoder
b, t, c = conv_features.shape
enc_inputs = [conv_features, encoder_word_pos, None]
word_features = self.wrap_encoder_for_feature(enc_inputs)
# pvam
b, t, c = word_features.shape
word_features = self.fc0(word_features)
word_features_ = paddle.reshape(word_features, [-1, 1, t, c])
word_features_ = paddle.tile(word_features_, [1, self.max_length, 1, 1])
word_pos_feature = self.emb(gsrm_word_pos)
word_pos_feature_ = paddle.reshape(word_pos_feature,
[-1, self.max_length, 1, c])
word_pos_feature_ = paddle.tile(word_pos_feature_, [1, 1, t, 1])
y = word_pos_feature_ + word_features_
y = F.tanh(y)
attention_weight = self.fc1(y)
attention_weight = paddle.reshape(
attention_weight, shape=[-1, self.max_length, t])
attention_weight = F.softmax(attention_weight, axis=-1)
pvam_features = paddle.matmul(attention_weight,
word_features) #[b, max_length, c]
return pvam_features
class GSRM(nn.Layer):
def __init__(self, in_channels, char_num, max_text_length, num_heads,
num_encoder_tus, num_decoder_tus, hidden_dims):
super(GSRM, self).__init__()
self.char_num = char_num
self.max_length = max_text_length
self.num_heads = num_heads
self.num_encoder_TUs = num_encoder_tus
self.num_decoder_TUs = num_decoder_tus
self.hidden_dims = hidden_dims
self.fc0 = paddle.nn.Linear(
in_features=in_channels, out_features=self.char_num)
self.wrap_encoder0 = WrapEncoder(
src_vocab_size=self.char_num + 1,
max_length=self.max_length,
n_layer=self.num_decoder_TUs,
n_head=self.num_heads,
d_key=int(self.hidden_dims / self.num_heads),
d_value=int(self.hidden_dims / self.num_heads),
d_model=self.hidden_dims,
d_inner_hid=self.hidden_dims,
prepostprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da",
weight_sharing=True)
self.wrap_encoder1 = WrapEncoder(
src_vocab_size=self.char_num + 1,
max_length=self.max_length,
n_layer=self.num_decoder_TUs,
n_head=self.num_heads,
d_key=int(self.hidden_dims / self.num_heads),
d_value=int(self.hidden_dims / self.num_heads),
d_model=self.hidden_dims,
d_inner_hid=self.hidden_dims,
prepostprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da",
weight_sharing=True)
self.mul = lambda x: paddle.matmul(x=x,
y=self.wrap_encoder0.prepare_decoder.emb0.weight,
transpose_y=True)
def forward(self, inputs, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2):
# ===== GSRM Visual-to-semantic embedding block =====
b, t, c = inputs.shape
pvam_features = paddle.reshape(inputs, [-1, c])
word_out = self.fc0(pvam_features)
word_ids = paddle.argmax(F.softmax(word_out), axis=1)
word_ids = paddle.reshape(x=word_ids, shape=[-1, t, 1])
#===== GSRM Semantic reasoning block =====
"""
This module is achieved through bi-transformers,
ngram_feature1 is the froward one, ngram_fetaure2 is the backward one
"""
pad_idx = self.char_num
word1 = paddle.cast(word_ids, "float32")
word1 = F.pad(word1, [1, 0], value=1.0 * pad_idx, data_format="NLC")
word1 = paddle.cast(word1, "int64")
word1 = word1[:, :-1, :]
word2 = word_ids
enc_inputs_1 = [word1, gsrm_word_pos, gsrm_slf_attn_bias1]
enc_inputs_2 = [word2, gsrm_word_pos, gsrm_slf_attn_bias2]
gsrm_feature1 = self.wrap_encoder0(enc_inputs_1)
gsrm_feature2 = self.wrap_encoder1(enc_inputs_2)
gsrm_feature2 = F.pad(gsrm_feature2, [0, 1],
value=0.,
data_format="NLC")
gsrm_feature2 = gsrm_feature2[:, 1:, ]
gsrm_features = gsrm_feature1 + gsrm_feature2
gsrm_out = self.mul(gsrm_features)
b, t, c = gsrm_out.shape
gsrm_out = paddle.reshape(gsrm_out, [-1, c])
return gsrm_features, word_out, gsrm_out
class VSFD(nn.Layer):
def __init__(self, in_channels=512, pvam_ch=512, char_num=38):
super(VSFD, self).__init__()
self.char_num = char_num
self.fc0 = paddle.nn.Linear(
in_features=in_channels * 2, out_features=pvam_ch)
self.fc1 = paddle.nn.Linear(
in_features=pvam_ch, out_features=self.char_num)
def forward(self, pvam_feature, gsrm_feature):
b, t, c1 = pvam_feature.shape
b, t, c2 = gsrm_feature.shape
combine_feature_ = paddle.concat([pvam_feature, gsrm_feature], axis=2)
img_comb_feature_ = paddle.reshape(
combine_feature_, shape=[-1, c1 + c2])
img_comb_feature_map = self.fc0(img_comb_feature_)
img_comb_feature_map = F.sigmoid(img_comb_feature_map)
img_comb_feature_map = paddle.reshape(
img_comb_feature_map, shape=[-1, t, c1])
combine_feature = img_comb_feature_map * pvam_feature + (
1.0 - img_comb_feature_map) * gsrm_feature
img_comb_feature = paddle.reshape(combine_feature, shape=[-1, c1])
out = self.fc1(img_comb_feature)
return out
class SRNHead(nn.Layer):
def __init__(self, in_channels, out_channels, max_text_length, num_heads,
num_encoder_TUs, num_decoder_TUs, hidden_dims, **kwargs):
super(SRNHead, self).__init__()
self.char_num = out_channels
self.max_length = max_text_length
self.num_heads = num_heads
self.num_encoder_TUs = num_encoder_TUs
self.num_decoder_TUs = num_decoder_TUs
self.hidden_dims = hidden_dims
self.pvam = PVAM(
in_channels=in_channels,
char_num=self.char_num,
max_text_length=self.max_length,
num_heads=self.num_heads,
num_encoder_tus=self.num_encoder_TUs,
hidden_dims=self.hidden_dims)
self.gsrm = GSRM(
in_channels=in_channels,
char_num=self.char_num,
max_text_length=self.max_length,
num_heads=self.num_heads,
num_encoder_tus=self.num_encoder_TUs,
num_decoder_tus=self.num_decoder_TUs,
hidden_dims=self.hidden_dims)
self.vsfd = VSFD(in_channels=in_channels)
self.gsrm.wrap_encoder1.prepare_decoder.emb0 = self.gsrm.wrap_encoder0.prepare_decoder.emb0
def forward(self, inputs, others):
encoder_word_pos = others[0]
gsrm_word_pos = others[1]
gsrm_slf_attn_bias1 = others[2]
gsrm_slf_attn_bias2 = others[3]
pvam_feature = self.pvam(inputs, encoder_word_pos, gsrm_word_pos)
gsrm_feature, word_out, gsrm_out = self.gsrm(
pvam_feature, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2)
final_out = self.vsfd(pvam_feature, gsrm_feature)
if not self.training:
final_out = F.softmax(final_out, axis=1)
_, decoded_out = paddle.topk(final_out, k=1)
predicts = OrderedDict([
('predict', final_out),
('pvam_feature', pvam_feature),
('decoded_out', decoded_out),
('word_out', word_out),
('gsrm_out', gsrm_out),
])
return predicts
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import ParamAttr, nn
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import paddle.fluid as fluid
import numpy as np
gradient_clip = 10
class WrapEncoderForFeature(nn.Layer):
def __init__(self,
src_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
weight_sharing,
bos_idx=0):
super(WrapEncoderForFeature, self).__init__()
self.prepare_encoder = PrepareEncoder(
src_vocab_size,
d_model,
max_length,
prepostprocess_dropout,
bos_idx=bos_idx,
word_emb_param_name="src_word_emb_table")
self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout,
attention_dropout, relu_dropout, preprocess_cmd,
postprocess_cmd)
def forward(self, enc_inputs):
conv_features, src_pos, src_slf_attn_bias = enc_inputs
enc_input = self.prepare_encoder(conv_features, src_pos)
enc_output = self.encoder(enc_input, src_slf_attn_bias)
return enc_output
class WrapEncoder(nn.Layer):
"""
embedder + encoder
"""
def __init__(self,
src_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
weight_sharing,
bos_idx=0):
super(WrapEncoder, self).__init__()
self.prepare_decoder = PrepareDecoder(
src_vocab_size,
d_model,
max_length,
prepostprocess_dropout,
bos_idx=bos_idx)
self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout,
attention_dropout, relu_dropout, preprocess_cmd,
postprocess_cmd)
def forward(self, enc_inputs):
src_word, src_pos, src_slf_attn_bias = enc_inputs
enc_input = self.prepare_decoder(src_word, src_pos)
enc_output = self.encoder(enc_input, src_slf_attn_bias)
return enc_output
class Encoder(nn.Layer):
"""
encoder
"""
def __init__(self,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd="n",
postprocess_cmd="da"):
super(Encoder, self).__init__()
self.encoder_layers = list()
for i in range(n_layer):
self.encoder_layers.append(
self.add_sublayer(
"layer_%d" % i,
EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid,
prepostprocess_dropout, attention_dropout,
relu_dropout, preprocess_cmd,
postprocess_cmd)))
self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
def forward(self, enc_input, attn_bias):
for encoder_layer in self.encoder_layers:
enc_output = encoder_layer(enc_input, attn_bias)
enc_input = enc_output
enc_output = self.processer(enc_output)
return enc_output
class EncoderLayer(nn.Layer):
"""
EncoderLayer
"""
def __init__(self,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd="n",
postprocess_cmd="da"):
super(EncoderLayer, self).__init__()
self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
attention_dropout)
self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
def forward(self, enc_input, attn_bias):
attn_output = self.self_attn(
self.preprocesser1(enc_input), None, None, attn_bias)
attn_output = self.postprocesser1(attn_output, enc_input)
ffn_output = self.ffn(self.preprocesser2(attn_output))
ffn_output = self.postprocesser2(ffn_output, attn_output)
return ffn_output
class MultiHeadAttention(nn.Layer):
"""
Multi-Head Attention
"""
def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.d_key = d_key
self.d_value = d_value
self.d_model = d_model
self.dropout_rate = dropout_rate
self.q_fc = paddle.nn.Linear(
in_features=d_model, out_features=d_key * n_head, bias_attr=False)
self.k_fc = paddle.nn.Linear(
in_features=d_model, out_features=d_key * n_head, bias_attr=False)
self.v_fc = paddle.nn.Linear(
in_features=d_model, out_features=d_value * n_head, bias_attr=False)
self.proj_fc = paddle.nn.Linear(
in_features=d_value * n_head, out_features=d_model, bias_attr=False)
def _prepare_qkv(self, queries, keys, values, cache=None):
if keys is None: # self-attention
keys, values = queries, queries
static_kv = False
else: # cross-attention
static_kv = True
q = self.q_fc(queries)
q = paddle.reshape(x=q, shape=[0, 0, self.n_head, self.d_key])
q = paddle.transpose(x=q, perm=[0, 2, 1, 3])
if cache is not None and static_kv and "static_k" in cache:
# for encoder-decoder attention in inference and has cached
k = cache["static_k"]
v = cache["static_v"]
else:
k = self.k_fc(keys)
v = self.v_fc(values)
k = paddle.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
k = paddle.transpose(x=k, perm=[0, 2, 1, 3])
v = paddle.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
v = paddle.transpose(x=v, perm=[0, 2, 1, 3])
if cache is not None:
if static_kv and not "static_k" in cache:
# for encoder-decoder attention in inference and has not cached
cache["static_k"], cache["static_v"] = k, v
elif not static_kv:
# for decoder self-attention in inference
cache_k, cache_v = cache["k"], cache["v"]
k = paddle.concat([cache_k, k], axis=2)
v = paddle.concat([cache_v, v], axis=2)
cache["k"], cache["v"] = k, v
return q, k, v
def forward(self, queries, keys, values, attn_bias, cache=None):
# compute q ,k ,v
keys = queries if keys is None else keys
values = keys if values is None else values
q, k, v = self._prepare_qkv(queries, keys, values, cache)
# scale dot product attention
product = paddle.matmul(x=q, y=k, transpose_y=True)
product = product * self.d_model**-0.5
if attn_bias is not None:
product += attn_bias
weights = F.softmax(product)
if self.dropout_rate:
weights = F.dropout(
weights, p=self.dropout_rate, mode="downscale_in_infer")
out = paddle.matmul(weights, v)
# combine heads
out = paddle.transpose(out, perm=[0, 2, 1, 3])
out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
# project to output
out = self.proj_fc(out)
return out
class PrePostProcessLayer(nn.Layer):
"""
PrePostProcessLayer
"""
def __init__(self, process_cmd, d_model, dropout_rate):
super(PrePostProcessLayer, self).__init__()
self.process_cmd = process_cmd
self.functors = []
for cmd in self.process_cmd:
if cmd == "a": # add residual connection
self.functors.append(lambda x, y: x + y if y is not None else x)
elif cmd == "n": # add layer normalization
self.functors.append(
self.add_sublayer(
"layer_norm_%d" % len(
self.sublayers(include_sublayers=False)),
paddle.nn.LayerNorm(
normalized_shape=d_model,
weight_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(0.)))))
elif cmd == "d": # add dropout
self.functors.append(lambda x: F.dropout(
x, p=dropout_rate, mode="downscale_in_infer")
if dropout_rate else x)
def forward(self, x, residual=None):
for i, cmd in enumerate(self.process_cmd):
if cmd == "a":
x = self.functors[i](x, residual)
else:
x = self.functors[i](x)
return x
class PrepareEncoder(nn.Layer):
def __init__(self,
src_vocab_size,
src_emb_dim,
src_max_len,
dropout_rate=0,
bos_idx=0,
word_emb_param_name=None,
pos_enc_param_name=None):
super(PrepareEncoder, self).__init__()
self.src_emb_dim = src_emb_dim
self.src_max_len = src_max_len
self.emb = paddle.nn.Embedding(
num_embeddings=self.src_max_len,
embedding_dim=self.src_emb_dim,
sparse=True)
self.dropout_rate = dropout_rate
def forward(self, src_word, src_pos):
src_word_emb = src_word
src_word_emb = fluid.layers.cast(src_word_emb, 'float32')
src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
src_pos = paddle.squeeze(src_pos, axis=-1)
src_pos_enc = self.emb(src_pos)
src_pos_enc.stop_gradient = True
enc_input = src_word_emb + src_pos_enc
if self.dropout_rate:
out = F.dropout(
x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
else:
out = enc_input
return out
class PrepareDecoder(nn.Layer):
def __init__(self,
src_vocab_size,
src_emb_dim,
src_max_len,
dropout_rate=0,
bos_idx=0,
word_emb_param_name=None,
pos_enc_param_name=None):
super(PrepareDecoder, self).__init__()
self.src_emb_dim = src_emb_dim
"""
self.emb0 = Embedding(num_embeddings=src_vocab_size,
embedding_dim=src_emb_dim)
"""
self.emb0 = paddle.nn.Embedding(
num_embeddings=src_vocab_size,
embedding_dim=self.src_emb_dim,
weight_attr=paddle.ParamAttr(
name=word_emb_param_name,
initializer=nn.initializer.Normal(0., src_emb_dim**-0.5)))
self.emb1 = paddle.nn.Embedding(
num_embeddings=src_max_len,
embedding_dim=self.src_emb_dim,
weight_attr=paddle.ParamAttr(name=pos_enc_param_name))
self.dropout_rate = dropout_rate
def forward(self, src_word, src_pos):
src_word = fluid.layers.cast(src_word, 'int64')
src_word = paddle.squeeze(src_word, axis=-1)
src_word_emb = self.emb0(src_word)
src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
src_pos = paddle.squeeze(src_pos, axis=-1)
src_pos_enc = self.emb1(src_pos)
src_pos_enc.stop_gradient = True
enc_input = src_word_emb + src_pos_enc
if self.dropout_rate:
out = F.dropout(
x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
else:
out = enc_input
return out
class FFN(nn.Layer):
"""
Feed-Forward Network
"""
def __init__(self, d_inner_hid, d_model, dropout_rate):
super(FFN, self).__init__()
self.dropout_rate = dropout_rate
self.fc1 = paddle.nn.Linear(
in_features=d_model, out_features=d_inner_hid)
self.fc2 = paddle.nn.Linear(
in_features=d_inner_hid, out_features=d_model)
def forward(self, x):
hidden = self.fc1(x)
hidden = F.relu(hidden)
if self.dropout_rate:
hidden = F.dropout(
hidden, p=self.dropout_rate, mode="downscale_in_infer")
out = self.fc2(hidden)
return out
...@@ -26,11 +26,12 @@ def build_post_process(config, global_config=None): ...@@ -26,11 +26,12 @@ def build_post_process(config, global_config=None):
from .db_postprocess import DBPostProcess from .db_postprocess import DBPostProcess
from .east_postprocess import EASTPostProcess from .east_postprocess import EASTPostProcess
from .sast_postprocess import SASTPostProcess from .sast_postprocess import SASTPostProcess
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode
from .cls_postprocess import ClsPostProcess from .cls_postprocess import ClsPostProcess
support_dict = [ support_dict = [
'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode', 'AttnLabelDecode', 'ClsPostProcess' 'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode',
'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode'
] ]
config = copy.deepcopy(config) config = copy.deepcopy(config)
......
...@@ -29,6 +29,9 @@ class BaseRecLabelDecode(object): ...@@ -29,6 +29,9 @@ class BaseRecLabelDecode(object):
assert character_type in support_character_type, "Only {} are supported now but get {}".format( assert character_type in support_character_type, "Only {} are supported now but get {}".format(
support_character_type, character_type) support_character_type, character_type)
self.beg_str = "sos"
self.end_str = "eos"
if character_type == "en": if character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str) dict_character = list(self.character_str)
...@@ -104,7 +107,6 @@ class CTCLabelDecode(BaseRecLabelDecode): ...@@ -104,7 +107,6 @@ class CTCLabelDecode(BaseRecLabelDecode):
def __call__(self, preds, label=None, *args, **kwargs): def __call__(self, preds, label=None, *args, **kwargs):
if isinstance(preds, paddle.Tensor): if isinstance(preds, paddle.Tensor):
preds = preds.numpy() preds = preds.numpy()
preds_idx = preds.argmax(axis=2) preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2) preds_prob = preds.max(axis=2)
text = self.decode(preds_idx, preds_prob) text = self.decode(preds_idx, preds_prob)
...@@ -153,3 +155,83 @@ class AttnLabelDecode(BaseRecLabelDecode): ...@@ -153,3 +155,83 @@ class AttnLabelDecode(BaseRecLabelDecode):
assert False, "unsupport type %s in get_beg_end_flag_idx" \ assert False, "unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end % beg_or_end
return idx return idx
class SRNLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self,
character_dict_path=None,
character_type='en',
use_space_char=False,
**kwargs):
super(SRNLabelDecode, self).__init__(character_dict_path,
character_type, use_space_char)
def __call__(self, preds, label=None, *args, **kwargs):
pred = preds['predict']
char_num = len(self.character_str) + 2
if isinstance(pred, paddle.Tensor):
pred = pred.numpy()
pred = np.reshape(pred, [-1, char_num])
preds_idx = np.argmax(pred, axis=1)
preds_prob = np.max(pred, axis=1)
preds_idx = np.reshape(preds_idx, [-1, 25])
preds_prob = np.reshape(preds_prob, [-1, 25])
text = self.decode(preds_idx, preds_prob)
if label is None:
return text
label = self.decode(label, is_remove_duplicate=False)
return text, label
def decode(self, text_index, text_prob=None, is_remove_duplicate=True):
""" convert text-index into text-label. """
result_list = []
ignored_tokens = self.get_ignored_tokens()
batch_size = len(text_index)
for batch_idx in range(batch_size):
char_list = []
conf_list = []
for idx in range(len(text_index[batch_idx])):
if text_index[batch_idx][idx] in ignored_tokens:
continue
if is_remove_duplicate:
# only for predict
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
batch_idx][idx]:
continue
char_list.append(self.character[int(text_index[batch_idx][
idx])])
if text_prob is not None:
conf_list.append(text_prob[batch_idx][idx])
else:
conf_list.append(1)
text = ''.join(char_list)
result_list.append((text, np.mean(conf_list)))
return result_list
def add_special_char(self, dict_character):
dict_character = dict_character + [self.beg_str, self.end_str]
return dict_character
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
...@@ -31,6 +31,14 @@ from ppocr.utils.logging import get_logger ...@@ -31,6 +31,14 @@ from ppocr.utils.logging import get_logger
from tools.program import load_config, merge_config, ArgsParser from tools.program import load_config, merge_config, ArgsParser
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", help="configuration file to use")
parser.add_argument(
"-o", "--output_path", type=str, default='./output/infer/')
return parser.parse_args()
def main(): def main():
FLAGS = ArgsParser().parse_args() FLAGS = ArgsParser().parse_args()
config = load_config(FLAGS.config) config = load_config(FLAGS.config)
...@@ -51,14 +59,33 @@ def main(): ...@@ -51,14 +59,33 @@ def main():
model.eval() model.eval()
save_path = '{}/inference'.format(config['Global']['save_inference_dir']) save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
infer_shape = [3, 32, 100] if config['Architecture'][
'model_type'] != "det" else [3, 640, 640] if config['Architecture']['algorithm'] == "SRN":
model = to_static( other_shape = [
model,
input_spec=[
paddle.static.InputSpec( paddle.static.InputSpec(
shape=[None] + infer_shape, dtype='float32') shape=[None, 1, 64, 256], dtype='float32'), [
]) paddle.static.InputSpec(
shape=[None, 256, 1],
dtype="int64"), paddle.static.InputSpec(
shape=[None, 25, 1],
dtype="int64"), paddle.static.InputSpec(
shape=[None, 8, 25, 25], dtype="int64"),
paddle.static.InputSpec(
shape=[None, 8, 25, 25], dtype="int64")
]
]
model = to_static(model, input_spec=other_shape)
else:
infer_shape = [3, 32, 100] if config['Architecture'][
'model_type'] != "det" else [3, 640, 640]
model = to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None] + infer_shape, dtype='float32')
])
paddle.jit.save(model, save_path) paddle.jit.save(model, save_path)
logger.info('inference model is saved to {}'.format(save_path)) logger.info('inference model is saved to {}'.format(save_path))
......
...@@ -25,6 +25,7 @@ import numpy as np ...@@ -25,6 +25,7 @@ import numpy as np
import math import math
import time import time
import traceback import traceback
import paddle
import tools.infer.utility as utility import tools.infer.utility as utility
from ppocr.postprocess import build_post_process from ppocr.postprocess import build_post_process
...@@ -46,6 +47,13 @@ class TextRecognizer(object): ...@@ -46,6 +47,13 @@ class TextRecognizer(object):
"character_dict_path": args.rec_char_dict_path, "character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char "use_space_char": args.use_space_char
} }
if self.rec_algorithm == "SRN":
postprocess_params = {
'name': 'SRNLabelDecode',
"character_type": args.rec_char_type,
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char
}
self.postprocess_op = build_post_process(postprocess_params) self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors = \ self.predictor, self.input_tensor, self.output_tensors = \
utility.create_predictor(args, 'rec', logger) utility.create_predictor(args, 'rec', logger)
...@@ -70,6 +78,78 @@ class TextRecognizer(object): ...@@ -70,6 +78,78 @@ class TextRecognizer(object):
padding_im[:, :, 0:resized_w] = resized_image padding_im[:, :, 0:resized_w] = resized_image
return padding_im return padding_im
def resize_norm_img_srn(self, img, image_shape):
imgC, imgH, imgW = image_shape
img_black = np.zeros((imgH, imgW))
im_hei = img.shape[0]
im_wid = img.shape[1]
if im_wid <= im_hei * 1:
img_new = cv2.resize(img, (imgH * 1, imgH))
elif im_wid <= im_hei * 2:
img_new = cv2.resize(img, (imgH * 2, imgH))
elif im_wid <= im_hei * 3:
img_new = cv2.resize(img, (imgH * 3, imgH))
else:
img_new = cv2.resize(img, (imgW, imgH))
img_np = np.asarray(img_new)
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
img_black[:, 0:img_np.shape[1]] = img_np
img_black = img_black[:, :, np.newaxis]
row, col, c = img_black.shape
c = 1
return np.reshape(img_black, (c, row, col)).astype(np.float32)
def srn_other_inputs(self, image_shape, num_heads, max_text_length):
imgC, imgH, imgW = image_shape
feature_dim = int((imgH / 8) * (imgW / 8))
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
(feature_dim, 1)).astype('int64')
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
(max_text_length, 1)).astype('int64')
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
[-1, 1, max_text_length, max_text_length])
gsrm_slf_attn_bias1 = np.tile(
gsrm_slf_attn_bias1,
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
[-1, 1, max_text_length, max_text_length])
gsrm_slf_attn_bias2 = np.tile(
gsrm_slf_attn_bias2,
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
encoder_word_pos = encoder_word_pos[np.newaxis, :]
gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
return [
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2
]
def process_image_srn(self, img, image_shape, num_heads, max_text_length):
norm_img = self.resize_norm_img_srn(img, image_shape)
norm_img = norm_img[np.newaxis, :]
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
self.srn_other_inputs(image_shape, num_heads, max_text_length)
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
encoder_word_pos = encoder_word_pos.astype(np.int64)
gsrm_word_pos = gsrm_word_pos.astype(np.int64)
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2)
def __call__(self, img_list): def __call__(self, img_list):
img_num = len(img_list) img_num = len(img_list)
# Calculate the aspect ratio of all text bars # Calculate the aspect ratio of all text bars
...@@ -93,21 +173,64 @@ class TextRecognizer(object): ...@@ -93,21 +173,64 @@ class TextRecognizer(object):
wh_ratio = w * 1.0 / h wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio) max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no): for ino in range(beg_img_no, end_img_no):
# norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio) if self.rec_algorithm != "SRN":
norm_img = self.resize_norm_img(img_list[indices[ino]], norm_img = self.resize_norm_img(img_list[indices[ino]],
max_wh_ratio) max_wh_ratio)
norm_img = norm_img[np.newaxis, :] norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img) norm_img_batch.append(norm_img)
else:
norm_img = self.process_image_srn(
img_list[indices[ino]], self.rec_image_shape, 8, 25)
encoder_word_pos_list = []
gsrm_word_pos_list = []
gsrm_slf_attn_bias1_list = []
gsrm_slf_attn_bias2_list = []
encoder_word_pos_list.append(norm_img[1])
gsrm_word_pos_list.append(norm_img[2])
gsrm_slf_attn_bias1_list.append(norm_img[3])
gsrm_slf_attn_bias2_list.append(norm_img[4])
norm_img_batch.append(norm_img[0])
norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy() norm_img_batch = norm_img_batch.copy()
starttime = time.time()
self.input_tensor.copy_from_cpu(norm_img_batch) if self.rec_algorithm == "SRN":
self.predictor.run() starttime = time.time()
outputs = [] encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
for output_tensor in self.output_tensors: gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
output = output_tensor.copy_to_cpu() gsrm_slf_attn_bias1_list = np.concatenate(
outputs.append(output) gsrm_slf_attn_bias1_list)
preds = outputs[0] gsrm_slf_attn_bias2_list = np.concatenate(
gsrm_slf_attn_bias2_list)
inputs = [
norm_img_batch,
encoder_word_pos_list,
gsrm_word_pos_list,
gsrm_slf_attn_bias1_list,
gsrm_slf_attn_bias2_list,
]
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[
i])
input_tensor.copy_from_cpu(inputs[i])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = {"predict": outputs[2]}
else:
starttime = time.time()
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = outputs[0]
rec_result = self.postprocess_op(preds) rec_result = self.postprocess_op(preds)
for rno in range(len(rec_result)): for rno in range(len(rec_result)):
rec_res[indices[beg_img_no + rno]] = rec_result[rno] rec_res[indices[beg_img_no + rno]] = rec_result[rno]
......
...@@ -62,7 +62,13 @@ def main(): ...@@ -62,7 +62,13 @@ def main():
elif op_name in ['RecResizeImg']: elif op_name in ['RecResizeImg']:
op[op_name]['infer_mode'] = True op[op_name]['infer_mode'] = True
elif op_name == 'KeepKeys': elif op_name == 'KeepKeys':
op[op_name]['keep_keys'] = ['image'] if config['Architecture']['algorithm'] == "SRN":
op[op_name]['keep_keys'] = [
'image', 'encoder_word_pos', 'gsrm_word_pos',
'gsrm_slf_attn_bias1', 'gsrm_slf_attn_bias2'
]
else:
op[op_name]['keep_keys'] = ['image']
transforms.append(op) transforms.append(op)
global_config['infer_mode'] = True global_config['infer_mode'] = True
ops = create_operators(transforms, global_config) ops = create_operators(transforms, global_config)
...@@ -74,10 +80,25 @@ def main(): ...@@ -74,10 +80,25 @@ def main():
img = f.read() img = f.read()
data = {'image': img} data = {'image': img}
batch = transform(data, ops) batch = transform(data, ops)
if config['Architecture']['algorithm'] == "SRN":
encoder_word_pos_list = np.expand_dims(batch[1], axis=0)
gsrm_word_pos_list = np.expand_dims(batch[2], axis=0)
gsrm_slf_attn_bias1_list = np.expand_dims(batch[3], axis=0)
gsrm_slf_attn_bias2_list = np.expand_dims(batch[4], axis=0)
others = [
paddle.to_tensor(encoder_word_pos_list),
paddle.to_tensor(gsrm_word_pos_list),
paddle.to_tensor(gsrm_slf_attn_bias1_list),
paddle.to_tensor(gsrm_slf_attn_bias2_list)
]
images = np.expand_dims(batch[0], axis=0) images = np.expand_dims(batch[0], axis=0)
images = paddle.to_tensor(images) images = paddle.to_tensor(images)
preds = model(images) if config['Architecture']['algorithm'] == "SRN":
preds = model(images, others)
else:
preds = model(images)
post_result = post_process_class(preds) post_result = post_process_class(preds)
for rec_reuslt in post_result: for rec_reuslt in post_result:
logger.info('\t result: {}'.format(rec_reuslt)) logger.info('\t result: {}'.format(rec_reuslt))
......
...@@ -179,9 +179,9 @@ def train(config, ...@@ -179,9 +179,9 @@ def train(config,
if 'start_epoch' in best_model_dict: if 'start_epoch' in best_model_dict:
start_epoch = best_model_dict['start_epoch'] start_epoch = best_model_dict['start_epoch']
else: else:
start_epoch = 1 start_epoch = 0
for epoch in range(start_epoch, epoch_num + 1): for epoch in range(start_epoch, epoch_num):
if epoch > 0: if epoch > 0:
train_dataloader = build_dataloader(config, 'Train', device, logger) train_dataloader = build_dataloader(config, 'Train', device, logger)
train_batch_cost = 0.0 train_batch_cost = 0.0
...@@ -194,7 +194,11 @@ def train(config, ...@@ -194,7 +194,11 @@ def train(config,
break break
lr = optimizer.get_lr() lr = optimizer.get_lr()
images = batch[0] images = batch[0]
preds = model(images) if config['Architecture']['algorithm'] == "SRN":
others = batch[-4:]
preds = model(images, others)
else:
preds = model(images)
loss = loss_class(preds, batch) loss = loss_class(preds, batch)
avg_loss = loss['loss'] avg_loss = loss['loss']
avg_loss.backward() avg_loss.backward()
...@@ -212,6 +216,7 @@ def train(config, ...@@ -212,6 +216,7 @@ def train(config,
stats['lr'] = lr stats['lr'] = lr
train_stats.update(stats) train_stats.update(stats)
#cal_metric_during_train = False
if cal_metric_during_train: # onlt rec and cls need if cal_metric_during_train: # onlt rec and cls need
batch = [item.numpy() for item in batch] batch = [item.numpy() for item in batch]
post_result = post_process_class(preds, batch[1]) post_result = post_process_class(preds, batch[1])
...@@ -312,8 +317,9 @@ def eval(model, valid_dataloader, post_process_class, eval_class): ...@@ -312,8 +317,9 @@ def eval(model, valid_dataloader, post_process_class, eval_class):
if idx >= len(valid_dataloader): if idx >= len(valid_dataloader):
break break
images = batch[0] images = batch[0]
others = batch[-4:]
start = time.time() start = time.time()
preds = model(images) preds = model(images, others)
batch = [item.numpy() for item in batch] batch = [item.numpy() for item in batch]
# Obtain usable results from post-processing methods # Obtain usable results from post-processing methods
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册