未验证 提交 de3e2e7c 编写于 作者: L littletomatodonkey 提交者: GitHub

add CyclicalCosineDecay (#1599)

上级 8985f6c2
......@@ -18,6 +18,7 @@ from __future__ import print_function
from __future__ import unicode_literals
from paddle.optimizer import lr
from .lr_scheduler import CyclicalCosineDecay
class Linear(object):
......@@ -46,7 +47,7 @@ class Linear(object):
self.end_lr = end_lr
self.power = power
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = lr.PolynomialDecay(
......@@ -87,7 +88,7 @@ class Cosine(object):
self.learning_rate = learning_rate
self.T_max = step_each_epoch * epochs
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = lr.CosineAnnealingDecay(
......@@ -129,7 +130,7 @@ class Step(object):
self.learning_rate = learning_rate
self.gamma = gamma
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = lr.StepDecay(
......@@ -168,7 +169,7 @@ class Piecewise(object):
self.boundaries = [step_each_epoch * e for e in decay_epochs]
self.values = values
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = lr.PiecewiseDecay(
......@@ -183,3 +184,45 @@ class Piecewise(object):
end_lr=self.values[0],
last_epoch=self.last_epoch)
return learning_rate
class CyclicalCosine(object):
"""
Cyclical cosine learning rate decay
Args:
learning_rate(float): initial learning rate
step_each_epoch(int): steps each epoch
epochs(int): total training epochs
cycle(int): period of the cosine learning rate
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
learning_rate,
step_each_epoch,
epochs,
cycle,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(CyclicalCosine, self).__init__()
self.learning_rate = learning_rate
self.T_max = step_each_epoch * epochs
self.last_epoch = last_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
self.cycle = round(cycle * step_each_epoch)
def __call__(self):
learning_rate = CyclicalCosineDecay(
learning_rate=self.learning_rate,
T_max=self.T_max,
cycle=self.cycle,
last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.learning_rate,
last_epoch=self.last_epoch)
return learning_rate
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from paddle.optimizer.lr import LRScheduler
class CyclicalCosineDecay(LRScheduler):
def __init__(self,
learning_rate,
T_max,
cycle=1,
last_epoch=-1,
eta_min=0.0,
verbose=False):
"""
Cyclical cosine learning rate decay
A learning rate which can be referred in https://arxiv.org/pdf/2012.12645.pdf
Args:
learning rate(float): learning rate
T_max(int): maximum epoch num
cycle(int): period of the cosine decay
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
eta_min(float): minimum learning rate during training
verbose(bool): whether to print learning rate for each epoch
"""
super(CyclicalCosineDecay, self).__init__(learning_rate, last_epoch,
verbose)
self.cycle = cycle
self.eta_min = eta_min
def get_lr(self):
if self.last_epoch == 0:
return self.base_lr
reletive_epoch = self.last_epoch % self.cycle
lr = self.eta_min + 0.5 * (self.base_lr - self.eta_min) * \
(1 + math.cos(math.pi * reletive_epoch / self.cycle))
return lr
......@@ -179,9 +179,9 @@ def train(config,
if 'start_epoch' in best_model_dict:
start_epoch = best_model_dict['start_epoch']
else:
start_epoch = 0
start_epoch = 1
for epoch in range(start_epoch, epoch_num):
for epoch in range(start_epoch, epoch_num + 1):
if epoch > 0:
train_dataloader = build_dataloader(config, 'Train', device, logger)
train_batch_cost = 0.0
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册