predict_rec.py 7.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
19 20 21 22 23 24

import cv2
import copy
import numpy as np
import math
import time
25 26 27 28 29 30 31

import paddle.fluid as fluid

import tools.infer.utility as utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
32 33 34 35 36 37 38
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
39
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
D
dyning 已提交
40
        self.character_type = args.rec_char_type
41
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
42
        self.rec_algorithm = args.rec_algorithm
littletomatodonkey's avatar
littletomatodonkey 已提交
43
        self.use_zero_copy_run = args.use_zero_copy_run
T
tink2123 已提交
44 45
        char_ops_params = {
            "character_type": args.rec_char_type,
46
            "character_dict_path": args.rec_char_dict_path,
T
tink2123 已提交
47 48
            "use_space_char": args.use_space_char,
            "max_text_length": args.max_text_length
T
tink2123 已提交
49
        }
T
tink2123 已提交
50 51
        if self.rec_algorithm != "RARE":
            char_ops_params['loss_type'] = 'ctc'
T
tink2123 已提交
52
            self.loss_type = 'ctc'
T
tink2123 已提交
53 54
        else:
            char_ops_params['loss_type'] = 'attention'
T
tink2123 已提交
55
            self.loss_type = 'attention'
L
LDOUBLEV 已提交
56 57
        self.char_ops = CharacterOps(char_ops_params)

58
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
59
        imgC, imgH, imgW = self.rec_image_shape
60
        assert imgC == img.shape[2]
61
        if self.character_type == "ch":
T
tink2123 已提交
62
            imgW = int((32 * max_wh_ratio))
63
        h, w = img.shape[:2]
64 65 66 67 68
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
T
tink2123 已提交
69
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
70 71 72 73 74 75 76 77 78 79
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
80
        # Calculate the aspect ratio of all text bars
81 82 83
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
84
        # Sorting can speed up the recognition process
85 86 87 88
        indices = np.argsort(np.array(width_list))

        # rec_res = []
        rec_res = [['', 0.0]] * img_num
89
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
90 91 92 93
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
94
            max_wh_ratio = 0
L
LDOUBLEV 已提交
95
            for ino in range(beg_img_no, end_img_no):
96 97
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
98 99 100
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
101
                # norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
T
tink2123 已提交
102 103
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
L
LDOUBLEV 已提交
104 105 106 107 108
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
littletomatodonkey's avatar
littletomatodonkey 已提交
109 110 111 112 113 114
            if self.use_zero_copy_run:
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.zero_copy_run()
            else:
                norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
                self.predictor.run([norm_img_batch])
T
tink2123 已提交
115

T
tink2123 已提交
116
            if self.loss_type == "ctc":
T
tink2123 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
L
fix bug  
LDOUBLEV 已提交
134
                    if len(valid_ind) == 0:
135
                        continue
L
LDOUBLEV 已提交
136
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
137 138
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
T
tink2123 已提交
139 140 141
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
T
tink2123 已提交
142 143
                elapse = time.time() - starttime
                predict_time += elapse
T
tink2123 已提交
144 145 146 147 148 149 150 151 152
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
153 154
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
T
tink2123 已提交
155

L
LDOUBLEV 已提交
156 157 158
        return rec_res, predict_time


159
def main(args):
D
dyning 已提交
160
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
161 162 163 164
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
L
LDOUBLEV 已提交
165 166 167
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
168 169 170 171 172
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
T
tink2123 已提交
173 174
    try:
        rec_res, predict_time = text_recognizer(img_list)
T
tink2123 已提交
175 176
    except Exception as e:
        print(e)
T
tink2123 已提交
177
        logger.info(
T
tink2123 已提交
178 179 180 181
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
T
tink2123 已提交
182
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
T
tink2123 已提交
183
        exit()
L
LDOUBLEV 已提交
184 185 186 187
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))
188 189 190 191


if __name__ == "__main__":
    main(utility.parse_args())