predict_rec.py 7.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
19 20 21 22 23 24

import cv2
import copy
import numpy as np
import math
import time
25 26 27 28 29 30 31

import paddle.fluid as fluid

import tools.infer.utility as utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
32 33 34 35 36 37 38
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
39
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
D
dyning 已提交
40
        self.character_type = args.rec_char_type
41
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
42
        self.rec_algorithm = args.rec_algorithm
T
tink2123 已提交
43 44
        char_ops_params = {
            "character_type": args.rec_char_type,
45
            "character_dict_path": args.rec_char_dict_path,
T
tink2123 已提交
46 47
            "use_space_char": args.use_space_char,
            "max_text_length": args.max_text_length
T
tink2123 已提交
48
        }
T
tink2123 已提交
49 50
        if self.rec_algorithm != "RARE":
            char_ops_params['loss_type'] = 'ctc'
T
tink2123 已提交
51
            self.loss_type = 'ctc'
T
tink2123 已提交
52 53
        else:
            char_ops_params['loss_type'] = 'attention'
T
tink2123 已提交
54
            self.loss_type = 'attention'
L
LDOUBLEV 已提交
55 56
        self.char_ops = CharacterOps(char_ops_params)

57
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
58
        imgC, imgH, imgW = self.rec_image_shape
59
        assert imgC == img.shape[2]
60
        if self.character_type == "ch":
T
tink2123 已提交
61
            imgW = int((32 * max_wh_ratio))
62
        h, w = img.shape[:2]
63 64 65 66 67
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
T
tink2123 已提交
68
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
69 70 71 72 73 74 75 76 77 78
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
79
        # Calculate the aspect ratio of all text bars
80 81 82
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
83
        # Sorting can speed up the recognition process
84 85 86 87
        indices = np.argsort(np.array(width_list))

        # rec_res = []
        rec_res = [['', 0.0]] * img_num
88
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
89 90 91 92
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
93
            max_wh_ratio = 0
L
LDOUBLEV 已提交
94
            for ino in range(beg_img_no, end_img_no):
95 96
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
97 98 99
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
100
                # norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
T
tink2123 已提交
101 102
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
L
LDOUBLEV 已提交
103 104 105 106 107
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
108 109
            norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
            self.predictor.run([norm_img_batch])
T
tink2123 已提交
110

T
tink2123 已提交
111
            if self.loss_type == "ctc":
T
tink2123 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
L
fix bug  
LDOUBLEV 已提交
129
                    if len(valid_ind) == 0:
130
                        continue
L
LDOUBLEV 已提交
131
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
132 133
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
T
tink2123 已提交
134 135 136
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
T
tink2123 已提交
137 138
                elapse = time.time() - starttime
                predict_time += elapse
T
tink2123 已提交
139 140 141 142 143 144 145 146 147
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
148 149
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
T
tink2123 已提交
150

L
LDOUBLEV 已提交
151 152 153
        return rec_res, predict_time


154
def main(args):
D
dyning 已提交
155
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
156 157 158 159
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
L
LDOUBLEV 已提交
160 161 162
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
163 164 165 166 167
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
T
tink2123 已提交
168 169
    try:
        rec_res, predict_time = text_recognizer(img_list)
T
tink2123 已提交
170 171
    except Exception as e:
        print(e)
T
tink2123 已提交
172
        logger.info(
T
tink2123 已提交
173 174 175 176
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
T
tink2123 已提交
177
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
T
tink2123 已提交
178
        exit()
L
LDOUBLEV 已提交
179 180 181 182
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))
183 184 185 186


if __name__ == "__main__":
    main(utility.parse_args())