predict_cls.py 5.5 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import tools.infer.utility as utility
from ppocr.utils.utility import initial_logger

logger = initial_logger()
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
import cv2
import copy
import numpy as np
import math
import time
W
WenmuZhou 已提交
31
from paddle import fluid
W
WenmuZhou 已提交
32 33 34 35


class TextClassifier(object):
    def __init__(self, args):
W
wangjiawei04 已提交
36
        if args.use_pdserving is False:
W
wangjiawei04 已提交
37 38
            self.predictor, self.input_tensor, self.output_tensors = \
                utility.create_predictor(args, mode="cls")
W
WenmuZhou 已提交
39 40 41
        self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
        self.cls_batch_num = args.rec_batch_num
        self.label_list = args.label_list
W
WenmuZhou 已提交
42
        self.use_zero_copy_run = args.use_zero_copy_run
W
WenmuZhou 已提交
43
        self.cls_thresh = args.cls_thresh
W
WenmuZhou 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

    def resize_norm_img(self, img):
        imgC, imgH, imgW = self.cls_image_shape
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        if self.cls_image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_list = copy.deepcopy(img_list)
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the cls process
        indices = np.argsort(np.array(width_list))

        cls_res = [['', 0.0]] * img_num
        batch_num = self.cls_batch_num
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            max_wh_ratio = 0
            for ino in range(beg_img_no, end_img_no):
                h, w = img_list[indices[ino]].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[indices[ino]])
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()

W
WenmuZhou 已提交
96 97 98 99 100 101
            if self.use_zero_copy_run:
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.zero_copy_run()
            else:
                norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
                self.predictor.run([norm_img_batch])
W
WenmuZhou 已提交
102 103 104

            prob_out = self.output_tensors[0].copy_to_cpu()
            label_out = self.output_tensors[1].copy_to_cpu()
105 106
            if len(label_out.shape) != 1:
                prob_out, label_out = label_out, prob_out
W
WenmuZhou 已提交
107 108 109 110 111 112 113
            elapse = time.time() - starttime
            predict_time += elapse
            for rno in range(len(label_out)):
                label_idx = label_out[rno]
                score = prob_out[rno][label_idx]
                label = self.label_list[label_idx]
                cls_res[indices[beg_img_no + rno]] = [label, score]
W
WenmuZhou 已提交
114
                if '180' in label and score > self.cls_thresh:
W
WenmuZhou 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
                    img_list[indices[beg_img_no + rno]] = cv2.rotate(
                        img_list[indices[beg_img_no + rno]], 1)
        return img_list, cls_res, predict_time


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    text_classifier = TextClassifier(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list[:10]:
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
    try:
        img_list, cls_res, predict_time = text_classifier(img_list)
    except Exception as e:
        print(e)
        exit()
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], cls_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))


if __name__ == "__main__":
    main(utility.parse_args())