infer.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import fastdeploy as fd
import cv2
import os


def parse_arguments():
    import argparse
    import ast
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--det_model", required=True, help="Path of Detection model of PPOCR.")
    parser.add_argument(
        "--cls_model",
        required=True,
        help="Path of Classification model of PPOCR.")
    parser.add_argument(
        "--rec_model",
        required=True,
        help="Path of Recognization model of PPOCR.")
    parser.add_argument(
        "--rec_label_file",
        required=True,
        help="Path of Recognization model of PPOCR.")
    parser.add_argument(
        "--image", type=str, required=True, help="Path of test image file.")
    parser.add_argument(
        "--cls_bs",
        type=int,
        default=1,
        help="Classification model inference batch size.")
    parser.add_argument(
        "--rec_bs",
        type=int,
        default=6,
        help="Recognition model inference batch size")
    return parser.parse_args()


def build_option(args):

    det_option = fd.RuntimeOption()
    cls_option = fd.RuntimeOption()
    rec_option = fd.RuntimeOption()

    det_option.use_kunlunxin()
    cls_option.use_kunlunxin()
    rec_option.use_kunlunxin()

    return det_option, cls_option, rec_option


args = parse_arguments()

det_model_file = os.path.join(args.det_model, "inference.pdmodel")
det_params_file = os.path.join(args.det_model, "inference.pdiparams")

cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")

rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file

det_option, cls_option, rec_option = build_option(args)

det_model = fd.vision.ocr.DBDetector(
    det_model_file, det_params_file, runtime_option=det_option)

cls_model = fd.vision.ocr.Classifier(
    cls_model_file, cls_params_file, runtime_option=cls_option)

rec_model = fd.vision.ocr.Recognizer(
    rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)

# Create PP-OCRv3, if cls_model is not needed,
# just set cls_model=None .
ppocr_v3 = fd.vision.ocr.PPOCRv3(
    det_model=det_model, cls_model=cls_model, rec_model=rec_model)

# Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity.
95 96
# When inference batch size is set to -1, it means that the inference batch size
# of the cls and rec models will be the same as the number of boxes detected by the det model.
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
ppocr_v3.cls_batch_size = args.cls_bs
ppocr_v3.rec_batch_size = args.rec_bs

# Prepare image.
im = cv2.imread(args.image)

# Print the results.
result = ppocr_v3.predict(im)

print(result)

# Visuliaze the output.
vis_im = fd.vision.vis_ppocr(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")