# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--det_model", required=True, help="Path of Detection model of PPOCR.") parser.add_argument( "--cls_model", required=True, help="Path of Classification model of PPOCR.") parser.add_argument( "--rec_model", required=True, help="Path of Recognization model of PPOCR.") parser.add_argument( "--rec_label_file", required=True, help="Path of Recognization model of PPOCR.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--cls_bs", type=int, default=1, help="Classification model inference batch size.") parser.add_argument( "--rec_bs", type=int, default=6, help="Recognition model inference batch size") return parser.parse_args() def build_option(args): det_option = fd.RuntimeOption() cls_option = fd.RuntimeOption() rec_option = fd.RuntimeOption() det_option.use_kunlunxin() cls_option.use_kunlunxin() rec_option.use_kunlunxin() return det_option, cls_option, rec_option args = parse_arguments() det_model_file = os.path.join(args.det_model, "inference.pdmodel") det_params_file = os.path.join(args.det_model, "inference.pdiparams") cls_model_file = os.path.join(args.cls_model, "inference.pdmodel") cls_params_file = os.path.join(args.cls_model, "inference.pdiparams") rec_model_file = os.path.join(args.rec_model, "inference.pdmodel") rec_params_file = os.path.join(args.rec_model, "inference.pdiparams") rec_label_file = args.rec_label_file det_option, cls_option, rec_option = build_option(args) det_model = fd.vision.ocr.DBDetector( det_model_file, det_params_file, runtime_option=det_option) cls_model = fd.vision.ocr.Classifier( cls_model_file, cls_params_file, runtime_option=cls_option) rec_model = fd.vision.ocr.Recognizer( rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option) # Create PP-OCRv3, if cls_model is not needed, # just set cls_model=None . ppocr_v3 = fd.vision.ocr.PPOCRv3( det_model=det_model, cls_model=cls_model, rec_model=rec_model) # Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity. # When inference batch size is set to -1, it means that the inference batch size # of the cls and rec models will be the same as the number of boxes detected by the det model. ppocr_v3.cls_batch_size = args.cls_bs ppocr_v3.rec_batch_size = args.rec_bs # Prepare image. im = cv2.imread(args.image) # Print the results. result = ppocr_v3.predict(im) print(result) # Visuliaze the output. vis_im = fd.vision.vis_ppocr(im, result) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")