program.py 23.4 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27 28 29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
30 31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
33
from ppocr.utils.logging import get_logger
34
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
35
from ppocr.utils import profiler
D
dyning 已提交
36
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
37

D
dyning 已提交
38

L
LDOUBLEV 已提交
39 40 41 42 43 44 45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
46 47 48 49 50
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
51 52
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
53
        )
L
LDOUBLEV 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
82 83
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
84 85


86
def merge_config(config, opts):
L
LDOUBLEV 已提交
87 88 89 90 91 92
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
93
    for key, value in opts.items():
L
LDOUBLEV 已提交
94
        if "." not in key:
95 96
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
97
            else:
98
                config[key] = value
L
LDOUBLEV 已提交
99 100
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
101
            assert (
102
                sub_keys[0] in config
103 104
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
105 106
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
107 108 109 110 111
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
112
    return config
L
LDOUBLEV 已提交
113 114


X
xiaoting 已提交
115
def check_device(use_gpu, use_xpu=False):
L
LDOUBLEV 已提交
116 117 118 119
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
120 121 122 123
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
124 125 126
          "model on CPU"

    try:
X
xiaoting 已提交
127 128
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
129
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
130 131 132 133
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
134 135 136 137 138
            sys.exit(1)
    except Exception as e:
        pass


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass

文幕地方's avatar
文幕地方 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
def to_float32(preds):
    if isinstance(preds, dict):
        for k in preds:
            if isinstance(preds[k], dict) or isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
            else:
                preds[k] = preds[k].astype(paddle.float32)
    elif isinstance(preds, list):
        for k in range(len(preds)):
            if isinstance(preds[k], dict):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
            else:
                preds[k] = preds[k].astype(paddle.float32)
    else:
        preds = preds.astype(paddle.float32)
    return preds
175

W
WenmuZhou 已提交
176
def train(config,
D
dyning 已提交
177 178 179
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
180 181 182 183 184 185 186 187
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
188
          log_writer=None,
S
stephon 已提交
189
          scaler=None):
W
WenmuZhou 已提交
190 191
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
192
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
193 194 195 196
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
197
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
198

D
dyning 已提交
199
    global_step = 0
200 201
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
202 203 204 205
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
206 207
        if len(valid_dataloader) == 0:
            logger.info(
208 209
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
210 211
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
212
        logger.info(
213 214
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
215
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
216 217
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
218 219
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
220 221 222 223
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
224
    model_average = False
W
WenmuZhou 已提交
225 226
    model.train()

T
tink2123 已提交
227
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
228
    extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR"]
A
andyjpaddle 已提交
229
    extra_input = False
A
andyjpaddle 已提交
230
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
231 232 233
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
234 235
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
236
    try:
L
fix bug  
LDOUBLEV 已提交
237
        model_type = config['Architecture']['model_type']
238
    except:
L
fix bug  
LDOUBLEV 已提交
239
        model_type = None
A
andyjpaddle 已提交
240

T
tink2123 已提交
241
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
242

243 244 245 246
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
247 248
    train_reader_cost = 0.0
    train_batch_cost = 0.0
249
    reader_start = time.time()
250
    eta_meter = AverageMeter()
251 252 253

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
254

T
tink2123 已提交
255
    for epoch in range(start_epoch, epoch_num + 1):
256 257 258 259 260
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
261
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
262
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
263
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
264
            if idx >= max_iter:
W
WenmuZhou 已提交
265 266 267
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
268
            if use_srn:
T
tink2123 已提交
269
                model_average = True
S
stephon 已提交
270 271 272

            # use amp
            if scaler:
文幕地方's avatar
文幕地方 已提交
273
                with paddle.amp.auto_cast(level='O2'):
S
stephon 已提交
274 275
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
A
andyjpaddle 已提交
276 277
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
S
stephon 已提交
278 279
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
280 281 282 283 284 285
                preds = to_float32(preds)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
T
tink2123 已提交
286
            else:
S
stephon 已提交
287 288
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
289
                elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
290
                    preds = model(batch)
S
stephon 已提交
291 292
                else:
                    preds = model(images)
文幕地方's avatar
文幕地方 已提交
293 294
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
S
stephon 已提交
295 296
                avg_loss.backward()
                optimizer.step()
W
WenmuZhou 已提交
297
            optimizer.clear_grad()
W
WenmuZhou 已提交
298

299 300
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
文幕地方's avatar
文幕地方 已提交
301
                if model_type in ['kie']:
302
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
303 304 305
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
306
                else:
A
andyjpaddle 已提交
307 308 309 310 311 312
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
                    else:
                        post_result = post_process_class(preds, batch[1])
313 314 315 316
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

317 318 319
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
320
            global_step += 1
文幕地方's avatar
文幕地方 已提交
321
            total_samples += len(images)
W
WenmuZhou 已提交
322

D
dyning 已提交
323 324
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
325 326 327 328 329 330

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

331
            if log_writer is not None and dist.get_rank() == 0:
文幕地方's avatar
文幕地方 已提交
332 333
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
334

335 336 337
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
338
                logs = train_stats.log()
L
LDOUBLEV 已提交
339

340 341 342 343 344
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
L
LDOUBLEV 已提交
345
                       'ips: {:.5f} samples/s, eta: {}'.format(
346 347 348 349 350
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
351
                logger.info(strs)
352

文幕地方's avatar
文幕地方 已提交
353
                total_samples = 0
354 355
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
356 357
            # eval
            if global_step > start_eval_step and \
358 359
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
360 361 362 363 364 365 366
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
367 368 369 370 371
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
372
                    model_type,
T
tink2123 已提交
373
                    extra_input=extra_input)
L
LDOUBLEV 已提交
374 375 376
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
377 378

                # logger metric
379
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
380 381
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
382

L
LDOUBLEV 已提交
383
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
384
                        main_indicator]:
L
LDOUBLEV 已提交
385
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
386 387 388 389 390 391
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
392
                        config,
W
WenmuZhou 已提交
393 394 395
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
396 397
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
398
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
399 400 401 402
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
403
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
404 405 406 407 408 409 410 411 412 413 414 415
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
416

文幕地方's avatar
文幕地方 已提交
417
            reader_start = time.time()
W
WenmuZhou 已提交
418 419 420 421 422 423
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
424
                config,
W
WenmuZhou 已提交
425 426 427
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
428 429
                epoch=epoch,
                global_step=global_step)
430

431 432
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
433

W
WenmuZhou 已提交
434 435 436 437 438 439
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
440
                config,
W
WenmuZhou 已提交
441 442 443
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
444 445
                epoch=epoch,
                global_step=global_step)
446
            if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
447 448
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
449

L
LDOUBLEV 已提交
450
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
451 452
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
453 454
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
455 456 457
    return


M
refine  
MissPenguin 已提交
458 459 460 461
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
462
         model_type=None,
T
tink2123 已提交
463
         extra_input=False):
W
WenmuZhou 已提交
464 465 466 467
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
468 469 470 471 472
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
473 474
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
W
WenmuZhou 已提交
475
        for idx, batch in enumerate(valid_dataloader):
476
            if idx >= max_iter:
W
WenmuZhou 已提交
477
                break
W
fix bug  
WenmuZhou 已提交
478
            images = batch[0]
W
WenmuZhou 已提交
479
            start = time.time()
T
tink2123 已提交
480
            if model_type == 'table' or extra_input:
M
refine  
MissPenguin 已提交
481
                preds = model(images, data=batch[1:])
482
            elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
483
                preds = model(batch)
X
xiaoting 已提交
484
            else:
L
LDOUBLEV 已提交
485
                preds = model(images)
486 487 488 489 490 491
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
492 493 494
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
文幕地方's avatar
文幕地方 已提交
495
            if model_type in ['kie']:
496
                eval_class(preds, batch_numpy)
文幕地方's avatar
文幕地方 已提交
497
            elif model_type in ['table', 'vqa']:
498 499
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
M
MissPenguin 已提交
500
            else:
501 502
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
503

W
fix bug  
WenmuZhou 已提交
504
            pbar.update(1)
W
WenmuZhou 已提交
505
            total_frame += len(images)
L
LDOUBLEV 已提交
506 507
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
508

W
fix bug  
WenmuZhou 已提交
509
    pbar.close()
W
WenmuZhou 已提交
510
    model.train()
L
LDOUBLEV 已提交
511 512
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
513

T
tink2123 已提交
514

B
Bin Lu 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


564
def preprocess(is_train=False):
L
licx 已提交
565
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
566
    profiler_options = FLAGS.profiler_options
L
licx 已提交
567
    config = load_config(FLAGS.config)
568
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
569
    profile_dic = {"profiler_options": FLAGS.profiler_options}
570
    config = merge_config(config, profile_dic)
L
licx 已提交
571

W
WenmuZhou 已提交
572 573 574 575 576 577 578 579 580 581
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
582
    logger = get_logger(log_file=log_file)
L
licx 已提交
583 584 585

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
X
xiaoting 已提交
586
    use_xpu = config['Global'].get('use_xpu', False)
L
licx 已提交
587

588 589 590 591 592 593
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

W
WenmuZhou 已提交
594 595
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
596
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
597
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
598
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
599
        'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster'
W
WenmuZhou 已提交
600
    ]
L
licx 已提交
601

602
    if use_xpu:
X
xiaoting 已提交
603 604 605 606 607 608
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
    check_device(use_gpu, use_xpu)

W
WenmuZhou 已提交
609
    device = paddle.set_device(device)
D
dyning 已提交
610

D
dyning 已提交
611
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
612

613 614
    loggers = []

615
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
616
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
617
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
618
        log_writer = VDLLogger(save_model_dir)
619
        loggers.append(log_writer)
文幕地方's avatar
文幕地方 已提交
620 621
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
622 623 624 625 626 627 628 629
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
630
        loggers.append(log_writer)
D
dyning 已提交
631
    else:
632
        log_writer = None
D
dyning 已提交
633
    print_dict(config, logger)
634 635 636 637 638 639

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
640 641
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
642
    return config, device, logger, log_writer