pruning_and_finetune.py 5.6 KB
Newer Older
Y
yukavio 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import numpy as np
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..', '..', '..'))
sys.path.append(os.path.join(__dir__, '..', '..', '..', 'tools'))


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

import tools.program as program
from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.data.reader_main import reader_main
from ppocr.utils.save_load import init_model
from ppocr.utils.character import CharacterOps
from ppocr.utils.utility import initial_logger
from paddleslim.prune import Pruner, save_model
from paddleslim.analysis import flops
from paddleslim.core.graph_wrapper import *
from paddleslim.prune import load_sensitivities, get_ratios_by_loss, merge_sensitive
logger = initial_logger()

skip_list = [
    'conv10_linear_weights', 'conv11_linear_weights', 'conv12_expand_weights',
    'conv12_linear_weights', 'conv12_se_2_weights', 'conv13_linear_weights',
    'conv2_linear_weights', 'conv4_linear_weights', 'conv5_expand_weights',
    'conv5_linear_weights', 'conv5_se_2_weights', 'conv6_linear_weights',
    'conv7_linear_weights', 'conv8_expand_weights', 'conv8_linear_weights',
    'conv9_expand_weights', 'conv9_linear_weights'
]


def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    logger.info(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    program.check_gpu(use_gpu)

    alg = config['Global']['algorithm']
    assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']
    if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']:
        config['Global']['char_ops'] = CharacterOps(config['Global'])

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    startup_program = fluid.Program()
    train_program = fluid.Program()
    train_build_outputs = program.build(
        config, train_program, startup_program, mode='train')
    train_loader = train_build_outputs[0]
    train_fetch_name_list = train_build_outputs[1]
    train_fetch_varname_list = train_build_outputs[2]
    train_opt_loss_name = train_build_outputs[3]

    eval_program = fluid.Program()
    eval_build_outputs = program.build(
        config, eval_program, startup_program, mode='eval')
    eval_fetch_name_list = eval_build_outputs[1]
    eval_fetch_varname_list = eval_build_outputs[2]
    eval_program = eval_program.clone(for_test=True)

    train_reader = reader_main(config=config, mode="train")
    train_loader.set_sample_list_generator(train_reader, places=place)

    eval_reader = reader_main(config=config, mode="eval")

    exe = fluid.Executor(place)
    exe.run(startup_program)

    # compile program for multi-devices
    init_model(config, train_program, exe)

    sen = load_sensitivities("sensitivities_0.data")
    for i in skip_list:
        sen.pop(i)
    back_bone_list = ['conv' + str(x) for x in range(1, 5)]
    for i in back_bone_list:
        for key in list(sen.keys()):
            if i + '_' in key:
                sen.pop(key)
    ratios = get_ratios_by_loss(sen, 0.03)
    logger.info("FLOPs before pruning: {}".format(flops(eval_program)))
    pruner = Pruner(criterion='geometry_median')
    print("ratios: {}".format(ratios))
    pruned_val_program, _, _ = pruner.prune(
        eval_program,
        fluid.global_scope(),
        params=ratios.keys(),
        ratios=ratios.values(),
        place=place,
        only_graph=True)

    pruned_program, _, _ = pruner.prune(
        train_program,
        fluid.global_scope(),
        params=ratios.keys(),
        ratios=ratios.values(),
        place=place)
    logger.info("FLOPs after pruning: {}".format(flops(pruned_val_program)))
    train_compile_program = program.create_multi_devices_program(
        pruned_program, train_opt_loss_name)


    train_info_dict = {'compile_program':train_compile_program,\
        'train_program':pruned_program,\
        'reader':train_loader,\
        'fetch_name_list':train_fetch_name_list,\
        'fetch_varname_list':train_fetch_varname_list}

    eval_info_dict = {'program':pruned_val_program,\
        'reader':eval_reader,\
        'fetch_name_list':eval_fetch_name_list,\
        'fetch_varname_list':eval_fetch_varname_list}

    if alg in ['EAST', 'DB']:
        program.train_eval_det_run(
            config, exe, train_info_dict, eval_info_dict, is_pruning=True)
    else:
        program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict)


if __name__ == '__main__':
    parser = program.ArgsParser()
    FLAGS = parser.parse_args()
    main()