# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import numpy as np __dir__ = os.path.dirname(__file__) sys.path.append(__dir__) sys.path.append(os.path.join(__dir__, '..', '..', '..')) sys.path.append(os.path.join(__dir__, '..', '..', '..', 'tools')) def set_paddle_flags(**kwargs): for key, value in kwargs.items(): if os.environ.get(key, None) is None: os.environ[key] = str(value) # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would # not take any effect. set_paddle_flags( FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory ) import tools.program as program from paddle import fluid from ppocr.utils.utility import initial_logger logger = initial_logger() from ppocr.data.reader_main import reader_main from ppocr.utils.save_load import init_model from ppocr.utils.character import CharacterOps from ppocr.utils.utility import initial_logger from paddleslim.prune import Pruner, save_model from paddleslim.analysis import flops from paddleslim.core.graph_wrapper import * from paddleslim.prune import load_sensitivities, get_ratios_by_loss, merge_sensitive logger = initial_logger() skip_list = [ 'conv10_linear_weights', 'conv11_linear_weights', 'conv12_expand_weights', 'conv12_linear_weights', 'conv12_se_2_weights', 'conv13_linear_weights', 'conv2_linear_weights', 'conv4_linear_weights', 'conv5_expand_weights', 'conv5_linear_weights', 'conv5_se_2_weights', 'conv6_linear_weights', 'conv7_linear_weights', 'conv8_expand_weights', 'conv8_linear_weights', 'conv9_expand_weights', 'conv9_linear_weights' ] def main(): config = program.load_config(FLAGS.config) program.merge_config(FLAGS.opt) logger.info(config) # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] program.check_gpu(use_gpu) alg = config['Global']['algorithm'] assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE'] if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']: config['Global']['char_ops'] = CharacterOps(config['Global']) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() startup_program = fluid.Program() train_program = fluid.Program() train_build_outputs = program.build( config, train_program, startup_program, mode='train') train_loader = train_build_outputs[0] train_fetch_name_list = train_build_outputs[1] train_fetch_varname_list = train_build_outputs[2] train_opt_loss_name = train_build_outputs[3] eval_program = fluid.Program() eval_build_outputs = program.build( config, eval_program, startup_program, mode='eval') eval_fetch_name_list = eval_build_outputs[1] eval_fetch_varname_list = eval_build_outputs[2] eval_program = eval_program.clone(for_test=True) train_reader = reader_main(config=config, mode="train") train_loader.set_sample_list_generator(train_reader, places=place) eval_reader = reader_main(config=config, mode="eval") exe = fluid.Executor(place) exe.run(startup_program) # compile program for multi-devices init_model(config, train_program, exe) sen = load_sensitivities("sensitivities_0.data") for i in skip_list: sen.pop(i) back_bone_list = ['conv' + str(x) for x in range(1, 5)] for i in back_bone_list: for key in list(sen.keys()): if i + '_' in key: sen.pop(key) ratios = get_ratios_by_loss(sen, 0.03) logger.info("FLOPs before pruning: {}".format(flops(eval_program))) pruner = Pruner(criterion='geometry_median') print("ratios: {}".format(ratios)) pruned_val_program, _, _ = pruner.prune( eval_program, fluid.global_scope(), params=ratios.keys(), ratios=ratios.values(), place=place, only_graph=True) pruned_program, _, _ = pruner.prune( train_program, fluid.global_scope(), params=ratios.keys(), ratios=ratios.values(), place=place) logger.info("FLOPs after pruning: {}".format(flops(pruned_val_program))) train_compile_program = program.create_multi_devices_program( pruned_program, train_opt_loss_name) train_info_dict = {'compile_program':train_compile_program,\ 'train_program':pruned_program,\ 'reader':train_loader,\ 'fetch_name_list':train_fetch_name_list,\ 'fetch_varname_list':train_fetch_varname_list} eval_info_dict = {'program':pruned_val_program,\ 'reader':eval_reader,\ 'fetch_name_list':eval_fetch_name_list,\ 'fetch_varname_list':eval_fetch_varname_list} if alg in ['EAST', 'DB']: program.train_eval_det_run( config, exe, train_info_dict, eval_info_dict, is_pruning=True) else: program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict) if __name__ == '__main__': parser = program.ArgsParser() FLAGS = parser.parse_args() main()