quickstart_en.md 11.2 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2
# PP-Structure Quick Start

M
MissPenguin 已提交
3 4
- [1. Environment Preparation](#1-environment-preparation)
- [2. Quick Use](#2-quick-use)
文幕地方's avatar
文幕地方 已提交
5
  - [2.1 Use by command line](#21-use-by-command-line)
6 7 8 9
    - [2.1.1 image orientation + layout analysis + table recognition](#211-image-orientation--layout-analysis--table-recognition)
    - [2.1.2 layout analysis + table recognition](#212-layout-analysis--table-recognition)
    - [2.1.3 layout analysis](#213-layout-analysis)
    - [2.1.4 table recognition](#214-table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
10
    - [2.1.5 Key Information Extraction](#215-Key-Information-Extraction)
A
an1018 已提交
11
    - [2.1.6 layout recovery](#216-layout-recovery)
M
MissPenguin 已提交
12
  - [2.2 Use by python script](#22-use-by-python-script)
13 14 15 16
    - [2.2.1 image orientation + layout analysis + table recognition](#221-image-orientation--layout-analysis--table-recognition)
    - [2.2.2 layout analysis + table recognition](#222-layout-analysis--table-recognition)
    - [2.2.3 layout analysis](#223-layout-analysis)
    - [2.2.4 table recognition](#224-table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
17
    - [2.2.5 Key Information Extraction](#225-Key-Information-Extraction)
A
an1018 已提交
18
    - [2.2.6 layout recovery](#226-layout-recovery)  
文幕地方's avatar
文幕地方 已提交
19 20
  - [2.3 Result description](#23-result-description)
    - [2.3.1 layout analysis + table recognition](#231-layout-analysis--table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
21
    - [2.3.2 Key Information Extraction](#232-Key-Information-Extraction)
文幕地方's avatar
文幕地方 已提交
22
  - [2.4 Parameter Description](#24-parameter-description)
M
MissPenguin 已提交
23
- [3. Summary](#3-summary)
M
update  
MissPenguin 已提交
24 25 26


<a name="1"></a>
M
MissPenguin 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
## 1. Environment Preparation
### 1.1 Install PaddlePaddle

> If you do not have a Python environment, please refer to [Environment Preparation](./environment_en.md).

- If you have CUDA 9 or CUDA 10 installed on your machine, please run the following command to install

  ```bash
  python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
  ```

- If you have no available GPU on your machine, please run the following command to install the CPU version

  ```bash
  python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
  ```

For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation.

### 1.2 Install PaddleOCR Whl Package
M
update  
MissPenguin 已提交
47 48

```bash
A
an1018 已提交
49 50
# Install paddleocr, version 2.6 is recommended
pip3 install "paddleocr>=2.6"
M
MissPenguin 已提交
51

A
an1018 已提交
52 53
# Install the image direction classification dependency package paddleclas (if you do not use the image direction classification, you can skip it)
pip3 install paddleclas
M
MissPenguin 已提交
54 55 56

# Install the KIE dependency packages (if you do not use the KIE, you can skip it)
pip3 install -r kie/requirements.txt
M
update  
MissPenguin 已提交
57 58 59
```

<a name="2"></a>
A
an1018 已提交
60

M
MissPenguin 已提交
61
## 2. Quick Use
M
update  
MissPenguin 已提交
62 63

<a name="21"></a>
文幕地方's avatar
文幕地方 已提交
64
### 2.1 Use by command line
65

M
update  
MissPenguin 已提交
66
<a name="211"></a>
67
#### 2.1.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
68
```bash
M
MissPenguin 已提交
69
paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure --image_orientation=true
M
update  
MissPenguin 已提交
70 71 72
```

<a name="212"></a>
73
#### 2.1.2 layout analysis + table recognition
74
```bash
M
MissPenguin 已提交
75
paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure
76 77 78
```

<a name="213"></a>
79
#### 2.1.3 layout analysis
80
```bash
M
MissPenguin 已提交
81
paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure --table=false --ocr=false
82 83 84
```

<a name="214"></a>
85 86
#### 2.1.4 table recognition
```bash
M
MissPenguin 已提交
87
paddleocr --image_dir=ppstructure/docs/table/table.jpg --type=structure --layout=false
88 89 90
```

<a name="215"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
91
#### 2.1.5 Key Information Extraction
M
update  
MissPenguin 已提交
92

M
MissPenguin 已提交
93
Key information extraction does not currently support use by the whl package. For detailed usage tutorials, please refer to: [Key Information Extraction](../kie/README.md).
M
update  
MissPenguin 已提交
94

A
an1018 已提交
95 96 97
<a name="216"></a>
#### 2.1.6 layout recovery
```bash
M
MissPenguin 已提交
98
paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure --recovery=true
A
an1018 已提交
99 100
```

M
update  
MissPenguin 已提交
101
<a name="22"></a>
M
MissPenguin 已提交
102
### 2.2 Use by python script
M
update  
MissPenguin 已提交
103 104

<a name="221"></a>
105
#### 2.2.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
106 107 108 109 110 111

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

112
table_engine = PPStructure(show_log=True, image_orientation=True)
M
update  
MissPenguin 已提交
113

114
save_folder = './output'
M
MissPenguin 已提交
115
img_path = 'ppstructure/docs/table/1.png'
M
update  
MissPenguin 已提交
116 117 118 119 120 121 122 123 124 125
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

M
MissPenguin 已提交
126
font_path = 'doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
M
update  
MissPenguin 已提交
127 128 129 130 131 132 133
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="222"></a>
134 135 136 137 138 139 140 141 142 143
#### 2.2.2 layout analysis + table recognition

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

table_engine = PPStructure(show_log=True)

save_folder = './output'
M
MissPenguin 已提交
144
img_path = 'ppstructure/docs/table/1.png'
145 146 147 148 149 150 151 152 153 154
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

M
MissPenguin 已提交
155
font_path = 'doc/fonts/simfang.ttf' # font provieded in PaddleOCR
156 157 158 159 160 161 162 163
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="223"></a>
#### 2.2.3 layout analysis
164 165 166 167 168 169 170 171 172

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(table=False, ocr=False, show_log=True)

save_folder = './output'
M
MissPenguin 已提交
173
img_path = 'ppstructure/docs/table/1.png'
174 175 176 177 178 179 180 181 182
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

183 184
<a name="224"></a>
#### 2.2.4 table recognition
185 186 187 188 189 190 191 192 193

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(layout=False, show_log=True)

save_folder = './output'
M
MissPenguin 已提交
194
img_path = 'ppstructure/docs/table/table.jpg'
195 196 197 198 199 200 201 202 203
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

204
<a name="225"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
205
#### 2.2.5 Key Information Extraction
M
update  
MissPenguin 已提交
206

M
MissPenguin 已提交
207
Key information extraction does not currently support use by the whl package. For detailed usage tutorials, please refer to: [Key Information Extraction](../kie/README.md).
M
update  
MissPenguin 已提交
208

A
an1018 已提交
209 210 211 212 213 214 215 216 217 218 219 220
<a name="226"></a>
#### 2.2.6 layout recovery

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
from paddelocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx

table_engine = PPStructure(layout=False, show_log=True)

save_folder = './output'
M
MissPenguin 已提交
221
img_path = 'ppstructure/docs/table/1.png'
A
an1018 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

h, w, _ = img.shape
res = sorted_layout_boxes(res, w)
convert_info_docx(img, result, save_folder, os.path.basename(img_path).split('.')[0])
```

M
update  
MissPenguin 已提交
235
<a name="23"></a>
文幕地方's avatar
文幕地方 已提交
236 237 238
### 2.3 Result description

The return of PP-Structure is a list of dicts, the example is as follows:
M
update  
MissPenguin 已提交
239 240

<a name="231"></a>
文幕地方's avatar
文幕地方 已提交
241
#### 2.3.1 layout analysis + table recognition
M
update  
MissPenguin 已提交
242 243 244 245 246 247 248 249 250
```shell
[
  {   'type': 'Text',
      'bbox': [34, 432, 345, 462],
      'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
                [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
  }
]
```
文幕地方's avatar
文幕地方 已提交
251
Each field in dict is described as follows:
M
update  
MissPenguin 已提交
252

253 254
| field | description  |
| --- |---|
M
MissPenguin 已提交
255 256
|type| Type of image area. |
|bbox| The coordinates of the image area in the original image, respectively [upper left corner x, upper left corner y, lower right corner x, lower right corner y]. |
文幕地方's avatar
文幕地方 已提交
257
|res| OCR or table recognition result of the image area. <br> table: a dict with field descriptions as follows: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `html`: html str of table.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; In the code usage mode, set return_ocr_result_in_table=True whrn call can get the detection and recognition results of each text in the table area, corresponding to the following fields: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `boxes`: text detection boxes.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `rec_res`: text recognition results.<br> OCR: A tuple containing the detection boxes and recognition results of each single text. |
M
update  
MissPenguin 已提交
258

文幕地方's avatar
文幕地方 已提交
259
After the recognition is completed, each image will have a directory with the same name under the directory specified by the `output` field. Each table in the image will be stored as an excel, and the picture area will be cropped and saved. The filename of  excel and picture is their coordinates in the image.
M
update  
MissPenguin 已提交
260 261 262
  ```
  /output/table/1/
    └─ res.txt
文幕地方's avatar
文幕地方 已提交
263 264 265
    └─ [454, 360, 824, 658].xlsx        table recognition result
    └─ [16, 2, 828, 305].jpg            picture in Image
    └─ [17, 361, 404, 711].xlsx        table recognition result
M
update  
MissPenguin 已提交
266 267 268
  ```

<a name="232"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
269
#### 2.3.2 Key Information Extraction
M
update  
MissPenguin 已提交
270

littletomatodonkey's avatar
littletomatodonkey 已提交
271
Please refer to: [Key Information Extraction](../kie/README.md) .
M
update  
MissPenguin 已提交
272 273

<a name="24"></a>
文幕地方's avatar
文幕地方 已提交
274 275
### 2.4 Parameter Description

276 277 278 279 280 281 282 283 284 285 286
| field | description | default |
|---|---|---|
| output | result save path | ./output/table |
| table_max_len | long side of the image resize in table structure model | 488 |
| table_model_dir | Table structure model inference model path| None |
| table_char_dict_path | The dictionary path of table structure model | ../ppocr/utils/dict/table_structure_dict.txt  |
| merge_no_span_structure | In the table recognition model, whether to merge '\<td>' and '\</td>' | False |
| layout_model_dir  | Layout analysis model inference model path| None |
| layout_dict_path  | The dictionary path of layout analysis model| ../ppocr/utils/dict/layout_publaynet_dict.txt |
| layout_score_threshold  | The box threshold path of layout analysis model| 0.5|
| layout_nms_threshold  | The nms threshold path of layout analysis model| 0.5|
287
| kie_algorithm  | kie model algorithm| LayoutXLM|
288 289
| ser_model_dir  | Ser model inference model path| None|
| ser_dict_path  | The dictionary path of Ser model| ../train_data/XFUND/class_list_xfun.txt|
290
| mode | structure or kie  | structure   |
291 292 293 294 295
| image_orientation | Whether to perform image orientation classification in forward  | False   |
| layout | Whether to perform layout analysis in forward  | True   |
| table  | Whether to perform table recognition in forward  | True   |
| ocr    | Whether to perform ocr for non-table areas in layout analysis. When layout is False, it will be automatically set to False| True |
| recovery    | Whether to perform layout recovery in forward| False |
A
an1018 已提交
296
| save_pdf    | Whether to convert docx to pdf when recovery| False |
297 298
| structure_version |  Structure version, optional PP-structure and PP-structurev2  | PP-structure |

文幕地方's avatar
文幕地方 已提交
299
Most of the parameters are consistent with the PaddleOCR whl package, see [whl package documentation](../../doc/doc_en/whl.md)
M
MissPenguin 已提交
300 301 302 303 304

<a name="3"></a>
## 3. Summary

Through the content in this section, you can master the use of PP-Structure related functions through PaddleOCR whl package. Please refer to [documentation tutorial](../../README.md) for more detailed usage tutorials including model training, inference and deployment, etc.