quickstart_en.md 11.2 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2
# PP-Structure Quick Start

文幕地方's avatar
文幕地方 已提交
3 4 5
- [1. Install package](#1-install-package)
- [2. Use](#2-use)
  - [2.1 Use by command line](#21-use-by-command-line)
6 7 8 9
    - [2.1.1 image orientation + layout analysis + table recognition](#211-image-orientation--layout-analysis--table-recognition)
    - [2.1.2 layout analysis + table recognition](#212-layout-analysis--table-recognition)
    - [2.1.3 layout analysis](#213-layout-analysis)
    - [2.1.4 table recognition](#214-table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
10
    - [2.1.5 Key Information Extraction](#215-Key-Information-Extraction)
A
an1018 已提交
11
    - [2.1.6 layout recovery](#216-layout-recovery)
文幕地方's avatar
文幕地方 已提交
12
  - [2.2 Use by code](#22-use-by-code)
13 14 15 16
    - [2.2.1 image orientation + layout analysis + table recognition](#221-image-orientation--layout-analysis--table-recognition)
    - [2.2.2 layout analysis + table recognition](#222-layout-analysis--table-recognition)
    - [2.2.3 layout analysis](#223-layout-analysis)
    - [2.2.4 table recognition](#224-table-recognition)
17
    - [2.2.5 DocVQA](#225-dockie)
littletomatodonkey's avatar
littletomatodonkey 已提交
18
    - [2.2.5 Key Information Extraction](#225-Key-Information-Extraction)
A
an1018 已提交
19
    - [2.2.6 layout recovery](#226-layout-recovery)  
文幕地方's avatar
文幕地方 已提交
20 21
  - [2.3 Result description](#23-result-description)
    - [2.3.1 layout analysis + table recognition](#231-layout-analysis--table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
22
    - [2.3.2 Key Information Extraction](#232-Key-Information-Extraction)
文幕地方's avatar
文幕地方 已提交
23
  - [2.4 Parameter Description](#24-parameter-description)
M
update  
MissPenguin 已提交
24 25 26


<a name="1"></a>
文幕地方's avatar
文幕地方 已提交
27
## 1. Install package
M
update  
MissPenguin 已提交
28 29

```bash
A
an1018 已提交
30 31
# Install paddleocr, version 2.6 is recommended
pip3 install "paddleocr>=2.6"
littletomatodonkey's avatar
littletomatodonkey 已提交
32 33
# Install the KIE dependency packages (if you do not use the KIE, you can skip it)
pip install -r kie/requirements.txt
A
an1018 已提交
34 35
# Install the image direction classification dependency package paddleclas (if you do not use the image direction classification, you can skip it)
pip3 install paddleclas
M
update  
MissPenguin 已提交
36 37 38
```

<a name="2"></a>
A
an1018 已提交
39

文幕地方's avatar
文幕地方 已提交
40
## 2. Use
M
update  
MissPenguin 已提交
41 42

<a name="21"></a>
文幕地方's avatar
文幕地方 已提交
43
### 2.1 Use by command line
44

M
update  
MissPenguin 已提交
45
<a name="211"></a>
46
#### 2.1.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
47
```bash
48
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --image_orientation=true
M
update  
MissPenguin 已提交
49 50 51
```

<a name="212"></a>
52
#### 2.1.2 layout analysis + table recognition
53
```bash
54
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure
55 56 57
```

<a name="213"></a>
58
#### 2.1.3 layout analysis
59
```bash
60
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --table=false --ocr=false
61 62 63
```

<a name="214"></a>
64 65 66 67 68 69
#### 2.1.4 table recognition
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/table.jpg --type=structure --layout=false
```

<a name="215"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
70
#### 2.1.5 Key Information Extraction
M
update  
MissPenguin 已提交
71

littletomatodonkey's avatar
littletomatodonkey 已提交
72
Please refer to: [Key Information Extraction](../kie/README.md) .
M
update  
MissPenguin 已提交
73

A
an1018 已提交
74 75 76 77 78 79
<a name="216"></a>
#### 2.1.6 layout recovery
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --recovery=true
```

M
update  
MissPenguin 已提交
80
<a name="22"></a>
文幕地方's avatar
文幕地方 已提交
81
### 2.2 Use by code
M
update  
MissPenguin 已提交
82 83

<a name="221"></a>
84
#### 2.2.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
85 86 87 88 89 90

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

91
table_engine = PPStructure(show_log=True, image_orientation=True)
M
update  
MissPenguin 已提交
92

93 94
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
M
update  
MissPenguin 已提交
95 96 97 98 99 100 101 102 103 104
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

105
font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
M
update  
MissPenguin 已提交
106 107 108 109 110 111 112
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="222"></a>
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#### 2.2.2 layout analysis + table recognition

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

table_engine = PPStructure(show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

littletomatodonkey's avatar
littletomatodonkey 已提交
134
font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # font provieded in PaddleOCR
135 136 137 138 139 140 141 142
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="223"></a>
#### 2.2.3 layout analysis
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(table=False, ocr=False, show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

162 163
<a name="224"></a>
#### 2.2.4 table recognition
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(layout=False, show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/table.jpg'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

183
<a name="225"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
184
#### 2.2.5 Key Information Extraction
M
update  
MissPenguin 已提交
185

littletomatodonkey's avatar
littletomatodonkey 已提交
186
Please refer to: [Key Information Extraction](../kie/README.md) .
M
update  
MissPenguin 已提交
187

A
an1018 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
<a name="226"></a>
#### 2.2.6 layout recovery

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
from paddelocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx

table_engine = PPStructure(layout=False, show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

h, w, _ = img.shape
res = sorted_layout_boxes(res, w)
convert_info_docx(img, result, save_folder, os.path.basename(img_path).split('.')[0])
```

M
update  
MissPenguin 已提交
214
<a name="23"></a>
文幕地方's avatar
文幕地方 已提交
215 216 217
### 2.3 Result description

The return of PP-Structure is a list of dicts, the example is as follows:
M
update  
MissPenguin 已提交
218 219

<a name="231"></a>
文幕地方's avatar
文幕地方 已提交
220
#### 2.3.1 layout analysis + table recognition
M
update  
MissPenguin 已提交
221 222 223 224 225 226 227 228 229
```shell
[
  {   'type': 'Text',
      'bbox': [34, 432, 345, 462],
      'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
                [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
  }
]
```
文幕地方's avatar
文幕地方 已提交
230
Each field in dict is described as follows:
M
update  
MissPenguin 已提交
231

232 233
| field | description  |
| --- |---|
文幕地方's avatar
文幕地方 已提交
234 235 236
|type| Type of image area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|bbox| The coordinates of the image area in the original image, respectively [upper left corner x, upper left corner y, lower right corner x, lower right corner y].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|res| OCR or table recognition result of the image area. <br> table: a dict with field descriptions as follows: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `html`: html str of table.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; In the code usage mode, set return_ocr_result_in_table=True whrn call can get the detection and recognition results of each text in the table area, corresponding to the following fields: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `boxes`: text detection boxes.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `rec_res`: text recognition results.<br> OCR: A tuple containing the detection boxes and recognition results of each single text. |
M
update  
MissPenguin 已提交
237

文幕地方's avatar
文幕地方 已提交
238
After the recognition is completed, each image will have a directory with the same name under the directory specified by the `output` field. Each table in the image will be stored as an excel, and the picture area will be cropped and saved. The filename of  excel and picture is their coordinates in the image.
M
update  
MissPenguin 已提交
239 240 241
  ```
  /output/table/1/
    └─ res.txt
文幕地方's avatar
文幕地方 已提交
242 243 244
    └─ [454, 360, 824, 658].xlsx        table recognition result
    └─ [16, 2, 828, 305].jpg            picture in Image
    └─ [17, 361, 404, 711].xlsx        table recognition result
M
update  
MissPenguin 已提交
245 246 247
  ```

<a name="232"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
248
#### 2.3.2 Key Information Extraction
M
update  
MissPenguin 已提交
249

littletomatodonkey's avatar
littletomatodonkey 已提交
250
Please refer to: [Key Information Extraction](../kie/README.md) .
M
update  
MissPenguin 已提交
251 252

<a name="24"></a>
文幕地方's avatar
文幕地方 已提交
253 254
### 2.4 Parameter Description

255 256 257 258 259 260 261 262 263 264 265
| field | description | default |
|---|---|---|
| output | result save path | ./output/table |
| table_max_len | long side of the image resize in table structure model | 488 |
| table_model_dir | Table structure model inference model path| None |
| table_char_dict_path | The dictionary path of table structure model | ../ppocr/utils/dict/table_structure_dict.txt  |
| merge_no_span_structure | In the table recognition model, whether to merge '\<td>' and '\</td>' | False |
| layout_model_dir  | Layout analysis model inference model path| None |
| layout_dict_path  | The dictionary path of layout analysis model| ../ppocr/utils/dict/layout_publaynet_dict.txt |
| layout_score_threshold  | The box threshold path of layout analysis model| 0.5|
| layout_nms_threshold  | The nms threshold path of layout analysis model| 0.5|
266
| kie_algorithm  | kie model algorithm| LayoutXLM|
267 268
| ser_model_dir  | Ser model inference model path| None|
| ser_dict_path  | The dictionary path of Ser model| ../train_data/XFUND/class_list_xfun.txt|
269
| mode | structure or kie  | structure   |
270 271 272 273 274
| image_orientation | Whether to perform image orientation classification in forward  | False   |
| layout | Whether to perform layout analysis in forward  | True   |
| table  | Whether to perform table recognition in forward  | True   |
| ocr    | Whether to perform ocr for non-table areas in layout analysis. When layout is False, it will be automatically set to False| True |
| recovery    | Whether to perform layout recovery in forward| False |
A
an1018 已提交
275
| save_pdf    | Whether to convert docx to pdf when recovery| False |
276 277
| structure_version |  Structure version, optional PP-structure and PP-structurev2  | PP-structure |

文幕地方's avatar
文幕地方 已提交
278
Most of the parameters are consistent with the PaddleOCR whl package, see [whl package documentation](../../doc/doc_en/whl.md)