sr_telescope.yml 1.7 KB
Newer Older
风为何不回来's avatar
风为何不回来 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
Global:
  use_gpu: true
  epoch_num: 2
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/sr/sr_telescope/
  save_epoch_step: 3
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 1000]
  cal_metric_during_train: False
  pretrained_model:
  checkpoints:
  save_inference_dir:  ./output/sr/sr_telescope/infer
  use_visualdl: False
  infer_img: doc/imgs_words_en/word_52.png
  # for data or label process
  character_dict_path:
  max_text_length: 100
  infer_mode: False
  use_space_char: False
  save_res_path: ./output/sr/predicts_telescope.txt

Optimizer:
  name: Adam
  beta1: 0.5
  beta2: 0.999
  clip_norm: 0.25
  lr:
    learning_rate: 0.0001

Architecture:
  model_type: sr
  algorithm: Telescope
  Transform:
    name: TBSRN
    STN: True
    infer_mode: False

Loss:
  name: TelescopeLoss
  confuse_dict_path: ./ppocr/utils/dict/confuse.pkl


PostProcess:
  name: None

Metric:
  name: SRMetric
  main_indicator: all

Train:
  dataset:
    name: LMDBDataSetSR
文幕地方's avatar
文幕地方 已提交
54
    data_dir: ./train_data/TextZoom/test
风为何不回来's avatar
风为何不回来 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    transforms:
      - SRResize:
          imgH: 32
          imgW: 128
          down_sample_scale: 2
      - KeepKeys:
          keep_keys: ['img_lr', 'img_hr', 'label'] # dataloader will return list in this order
  loader:
    shuffle: False
    batch_size_per_card: 16
    drop_last: True
    num_workers: 4

Eval:
  dataset:
    name: LMDBDataSetSR
    data_dir: ./train_data/TextZoom/test
    transforms:
      - SRResize:
          imgH: 32
          imgW: 128
          down_sample_scale: 2
      - KeepKeys:
          keep_keys: ['img_lr', 'img_hr', 'label'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 16
    num_workers: 4