Global: use_gpu: true epoch_num: 2 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/sr/sr_telescope/ save_epoch_step: 3 # evaluation is run every 2000 iterations eval_batch_step: [0, 1000] cal_metric_during_train: False pretrained_model: checkpoints: save_inference_dir: ./output/sr/sr_telescope/infer use_visualdl: False infer_img: doc/imgs_words_en/word_52.png # for data or label process character_dict_path: max_text_length: 100 infer_mode: False use_space_char: False save_res_path: ./output/sr/predicts_telescope.txt Optimizer: name: Adam beta1: 0.5 beta2: 0.999 clip_norm: 0.25 lr: learning_rate: 0.0001 Architecture: model_type: sr algorithm: Telescope Transform: name: TBSRN STN: True infer_mode: False Loss: name: TelescopeLoss confuse_dict_path: ./ppocr/utils/dict/confuse.pkl PostProcess: name: None Metric: name: SRMetric main_indicator: all Train: dataset: name: LMDBDataSetSR data_dir: ./train_data/TextZoom/test transforms: - SRResize: imgH: 32 imgW: 128 down_sample_scale: 2 - KeepKeys: keep_keys: ['img_lr', 'img_hr', 'label'] # dataloader will return list in this order loader: shuffle: False batch_size_per_card: 16 drop_last: True num_workers: 4 Eval: dataset: name: LMDBDataSetSR data_dir: ./train_data/TextZoom/test transforms: - SRResize: imgH: 32 imgW: 128 down_sample_scale: 2 - KeepKeys: keep_keys: ['img_lr', 'img_hr', 'label'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 16 num_workers: 4