rec_postprocess.py 30.7 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

W
WenmuZhou 已提交
15 16 17
import numpy as np
import paddle
from paddle.nn import functional as F
A
andyjpaddle 已提交
18
import re
W
WenmuZhou 已提交
19 20 21 22 23


class BaseRecLabelDecode(object):
    """ Convert between text-label and text-index """

T
tink2123 已提交
24
    def __init__(self, character_dict_path=None, use_space_char=False):
T
tink2123 已提交
25 26 27
        self.beg_str = "sos"
        self.end_str = "eos"

T
tink2123 已提交
28 29
        self.character_str = []
        if character_dict_path is None:
A
add vl  
andyjpaddle 已提交
30 31
            # self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            self.character_str = "abcdefghijklmnopqrstuvwxyz1234567890"
W
WenmuZhou 已提交
32
            dict_character = list(self.character_str)
T
tink2123 已提交
33
        else:
W
WenmuZhou 已提交
34 35 36 37
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
W
WenmuZhou 已提交
38
                    self.character_str.append(line)
W
WenmuZhou 已提交
39
            if use_space_char:
W
WenmuZhou 已提交
40
                self.character_str.append(" ")
W
WenmuZhou 已提交
41
            dict_character = list(self.character_str)
T
tink2123 已提交
42

W
WenmuZhou 已提交
43 44 45 46 47 48 49 50 51
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

L
littletomatodonkey 已提交
52
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
W
WenmuZhou 已提交
53 54 55 56 57
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
            selection = np.ones(len(text_index[batch_idx]), dtype=bool)
            if is_remove_duplicate:
                selection[1:] = text_index[batch_idx][1:] != text_index[
                    batch_idx][:-1]
            for ignored_token in ignored_tokens:
                selection &= text_index[batch_idx] != ignored_token

            char_list = [
                self.character[text_id]
                for text_id in text_index[batch_idx][selection]
            ]
            if text_prob is not None:
                conf_list = text_prob[batch_idx][selection]
            else:
                conf_list = [1] * len(selection)
            if len(conf_list) == 0:
                conf_list = [0]

W
WenmuZhou 已提交
76
            text = ''.join(char_list)
77
            result_list.append((text, np.mean(conf_list).tolist()))
W
WenmuZhou 已提交
78 79 80 81 82 83 84 85 86
        return result_list

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


class CTCLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
87
    def __init__(self, character_dict_path=None, use_space_char=False,
W
WenmuZhou 已提交
88 89
                 **kwargs):
        super(CTCLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
90
                                             use_space_char)
W
WenmuZhou 已提交
91 92

    def __call__(self, preds, label=None, *args, **kwargs):
L
LDOUBLEV 已提交
93
        if isinstance(preds, tuple) or isinstance(preds, list):
94
            preds = preds[-1]
W
WenmuZhou 已提交
95 96
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
W
WenmuZhou 已提交
97 98
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
W
WenmuZhou 已提交
99
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
W
WenmuZhou 已提交
100 101
        if label is None:
            return text
L
littletomatodonkey 已提交
102
        label = self.decode(label)
W
WenmuZhou 已提交
103 104 105 106 107 108 109
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


littletomatodonkey's avatar
littletomatodonkey 已提交
110 111 112 113 114 115 116 117 118
class DistillationCTCLabelDecode(CTCLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 use_space_char=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
119
                 model_name=["student"],
120
                 key=None,
A
andyjpaddle 已提交
121
                 multi_head=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
122
                 **kwargs):
T
tink2123 已提交
123 124
        super(DistillationCTCLabelDecode, self).__init__(character_dict_path,
                                                         use_space_char)
littletomatodonkey's avatar
littletomatodonkey 已提交
125 126
        if not isinstance(model_name, list):
            model_name = [model_name]
littletomatodonkey's avatar
littletomatodonkey 已提交
127
        self.model_name = model_name
littletomatodonkey's avatar
littletomatodonkey 已提交
128

129
        self.key = key
A
andyjpaddle 已提交
130
        self.multi_head = multi_head
littletomatodonkey's avatar
littletomatodonkey 已提交
131 132

    def __call__(self, preds, label=None, *args, **kwargs):
littletomatodonkey's avatar
littletomatodonkey 已提交
133 134 135 136 137
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
A
andyjpaddle 已提交
138 139
            if self.multi_head and isinstance(pred, dict):
                pred = pred['ctc']
littletomatodonkey's avatar
littletomatodonkey 已提交
140 141
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output
littletomatodonkey's avatar
littletomatodonkey 已提交
142 143


T
Topdu 已提交
144 145 146
class NRTRLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
147
    def __init__(self, character_dict_path=None, use_space_char=True, **kwargs):
T
Topdu 已提交
148
        super(NRTRLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
149
                                              use_space_char)
T
Topdu 已提交
150 151 152

    def __call__(self, preds, label=None, *args, **kwargs):

T
Topdu 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165
        if len(preds) == 2:
            preds_id = preds[0]
            preds_prob = preds[1]
            if isinstance(preds_id, paddle.Tensor):
                preds_id = preds_id.numpy()
            if isinstance(preds_prob, paddle.Tensor):
                preds_prob = preds_prob.numpy()
            if preds_id[0][0] == 2:
                preds_idx = preds_id[:, 1:]
                preds_prob = preds_prob[:, 1:]
            else:
                preds_idx = preds_id
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
T
Topdu 已提交
166 167
            if label is None:
                return text
A
andyjpaddle 已提交
168
            label = self.decode(label[:, 1:])
T
Topdu 已提交
169 170 171 172 173 174 175 176
        else:
            if isinstance(preds, paddle.Tensor):
                preds = preds.numpy()
            preds_idx = preds.argmax(axis=2)
            preds_prob = preds.max(axis=2)
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
            if label is None:
                return text
A
andyjpaddle 已提交
177
            label = self.decode(label[:, 1:])
T
Topdu 已提交
178 179 180
        return text, label

    def add_special_char(self, dict_character):
A
andyjpaddle 已提交
181
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
T
Topdu 已提交
182
        return dict_character
A
andyjpaddle 已提交
183

T
Topdu 已提交
184 185 186 187 188 189 190 191
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
A
andyjpaddle 已提交
192
                if text_index[batch_idx][idx] == 3:  # end
T
Topdu 已提交
193 194
                    break
                try:
A
andyjpaddle 已提交
195 196
                    char_list.append(self.character[int(text_index[batch_idx][
                        idx])])
T
Topdu 已提交
197 198 199 200 201 202 203
                except:
                    continue
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
204
            result_list.append((text.lower(), np.mean(conf_list).tolist()))
T
Topdu 已提交
205 206 207
        return result_list


W
WenmuZhou 已提交
208 209 210
class AttnLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
211
    def __init__(self, character_dict_path=None, use_space_char=False,
W
WenmuZhou 已提交
212 213
                 **kwargs):
        super(AttnLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
214
                                              use_space_char)
W
WenmuZhou 已提交
215 216

    def add_special_char(self, dict_character):
L
LDOUBLEV 已提交
217 218 219 220
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character
        dict_character = [self.beg_str] + dict_character + [self.end_str]
W
WenmuZhou 已提交
221 222
        return dict_character

L
LDOUBLEV 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        [beg_idx, end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
A
andyjpaddle 已提交
242 243
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
L
LDOUBLEV 已提交
244 245 246 247 248
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
249
            result_list.append((text, np.mean(conf_list).tolist()))
L
LDOUBLEV 已提交
250 251
        return result_list

L
LDOUBLEV 已提交
252 253
    def __call__(self, preds, label=None, *args, **kwargs):
        """
W
WenmuZhou 已提交
254
        text = self.decode(text)
L
LDOUBLEV 已提交
255 256 257 258 259 260 261 262 263 264 265
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
L
LDOUBLEV 已提交
266
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
L
LDOUBLEV 已提交
267 268
        if label is None:
            return text
L
LDOUBLEV 已提交
269
        label = self.decode(label, is_remove_duplicate=False)
L
LDOUBLEV 已提交
270 271
        return text, label

W
WenmuZhou 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284
    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
M
MissPenguin 已提交
285
        return idx
T
tink2123 已提交
286 287


T
tink2123 已提交
288 289 290
class SEEDLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
291
    def __init__(self, character_dict_path=None, use_space_char=False,
T
tink2123 已提交
292 293
                 **kwargs):
        super(SEEDLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
294
                                              use_space_char)
T
tink2123 已提交
295 296

    def add_special_char(self, dict_character):
T
tink2123 已提交
297
        self.padding_str = "padding"
T
tink2123 已提交
298
        self.end_str = "eos"
T
tink2123 已提交
299 300 301 302
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding_str, self.unknown
        ]
T
tink2123 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
        return dict_character

    def get_ignored_tokens(self):
        end_idx = self.get_beg_end_flag_idx("eos")
        return [end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "sos":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "eos":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" % beg_or_end
        return idx

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        [end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
341
            result_list.append((text, np.mean(conf_list).tolist()))
T
tink2123 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        """
        text = self.decode(text)
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        preds_idx = preds["rec_pred"]
        if isinstance(preds_idx, paddle.Tensor):
            preds_idx = preds_idx.numpy()
        if "rec_pred_scores" in preds:
            preds_idx = preds["rec_pred"]
            preds_prob = preds["rec_pred_scores"]
        else:
            preds_idx = preds["rec_pred"].argmax(axis=2)
            preds_prob = preds["rec_pred"].max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label


T
tink2123 已提交
369 370 371
class SRNLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
372
    def __init__(self, character_dict_path=None, use_space_char=False,
T
tink2123 已提交
373 374
                 **kwargs):
        super(SRNLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
375
                                             use_space_char)
376
        self.max_text_length = kwargs.get('max_text_length', 25)
T
tink2123 已提交
377 378 379 380 381 382 383 384 385 386 387

    def __call__(self, preds, label=None, *args, **kwargs):
        pred = preds['predict']
        char_num = len(self.character_str) + 2
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = np.reshape(pred, [-1, char_num])

        preds_idx = np.argmax(pred, axis=1)
        preds_prob = np.max(pred, axis=1)

388
        preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
T
tink2123 已提交
389

390
        preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
T
tink2123 已提交
391

T
tink2123 已提交
392
        text = self.decode(preds_idx, preds_prob)
T
tink2123 已提交
393 394

        if label is None:
L
LDOUBLEV 已提交
395
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
T
tink2123 已提交
396
            return text
T
tink2123 已提交
397
        label = self.decode(label)
T
tink2123 已提交
398 399
        return text, label

L
LDOUBLEV 已提交
400
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
T
tink2123 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
425
            result_list.append((text, np.mean(conf_list).tolist()))
T
tink2123 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        return result_list

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
W
WenmuZhou 已提交
446 447 448 449 450


class TableLabelDecode(object):
    """  """

A
andyjpaddle 已提交
451 452 453
    def __init__(self, character_dict_path, **kwargs):
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
W
WenmuZhou 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        self.dict_idx_character = {}
        for i, char in enumerate(list_character):
            self.dict_idx_character[i] = char
            self.dict_character[char] = i
        self.dict_elem = {}
        self.dict_idx_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_idx_elem[i] = elem
            self.dict_elem[elem] = i

    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
A
andyjpaddle 已提交
472 473
            substr = lines[0].decode('utf-8').strip("\n").strip("\r\n").split(
                "\t")
W
WenmuZhou 已提交
474 475 476
            character_num = int(substr[0])
            elem_num = int(substr[1])
            for cno in range(1, 1 + character_num):
W
WenmuZhou 已提交
477
                character = lines[cno].decode('utf-8').strip("\n").strip("\r\n")
W
WenmuZhou 已提交
478 479
                list_character.append(character)
            for eno in range(1 + character_num, 1 + character_num + elem_num):
W
WenmuZhou 已提交
480
                elem = lines[eno].decode('utf-8').strip("\n").strip("\r\n")
W
WenmuZhou 已提交
481 482 483 484 485 486 487 488 489 490 491 492
                list_elem.append(elem)
        return list_character, list_elem

    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character

    def __call__(self, preds):
        structure_probs = preds['structure_probs']
        loc_preds = preds['loc_preds']
A
andyjpaddle 已提交
493
        if isinstance(structure_probs, paddle.Tensor):
W
WenmuZhou 已提交
494
            structure_probs = structure_probs.numpy()
A
andyjpaddle 已提交
495
        if isinstance(loc_preds, paddle.Tensor):
W
WenmuZhou 已提交
496 497 498
            loc_preds = loc_preds.numpy()
        structure_idx = structure_probs.argmax(axis=2)
        structure_probs = structure_probs.max(axis=2)
A
andyjpaddle 已提交
499 500
        structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(
            structure_idx, structure_probs, 'elem')
W
WenmuZhou 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514
        res_html_code_list = []
        res_loc_list = []
        batch_num = len(structure_str)
        for bno in range(batch_num):
            res_loc = []
            for sno in range(len(structure_str[bno])):
                text = structure_str[bno][sno]
                if text in ['<td>', '<td']:
                    pos = structure_pos[bno][sno]
                    res_loc.append(loc_preds[bno, pos])
            res_html_code = ''.join(structure_str[bno])
            res_loc = np.array(res_loc)
            res_html_code_list.append(res_html_code)
            res_loc_list.append(res_loc)
A
andyjpaddle 已提交
515 516 517 518 519 520 521
        return {
            'res_html_code': res_html_code_list,
            'res_loc': res_loc_list,
            'res_score_list': result_score_list,
            'res_elem_idx_list': result_elem_idx_list,
            'structure_str_list': structure_str
        }
W
WenmuZhou 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

    def decode(self, text_index, structure_probs, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            current_dict = self.dict_idx_character
        else:
            current_dict = self.dict_idx_elem
            ignored_tokens = self.get_ignored_tokens('elem')
            beg_idx, end_idx = ignored_tokens

        result_list = []
        result_pos_list = []
        result_score_list = []
        result_elem_idx_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            elem_pos_list = []
            elem_idx_list = []
            score_list = []
            for idx in range(len(text_index[batch_idx])):
                tmp_elem_idx = int(text_index[batch_idx][idx])
                if idx > 0 and tmp_elem_idx == end_idx:
                    break
                if tmp_elem_idx in ignored_tokens:
                    continue

                char_list.append(current_dict[tmp_elem_idx])
                elem_pos_list.append(idx)
                score_list.append(structure_probs[batch_idx, idx])
                elem_idx_list.append(tmp_elem_idx)
            result_list.append(char_list)
            result_pos_list.append(elem_pos_list)
            result_score_list.append(score_list)
            result_elem_idx_list.append(elem_idx_list)
        return result_list, result_pos_list, result_score_list, result_elem_idx_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = self.dict_character[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_character[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = self.dict_elem[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_elem[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
                              % beg_or_end
        else:
            assert False, "Unsupport type %s in char_or_elem" \
                          % char_or_elem
        return idx
A
andyjpaddle 已提交
586 587 588 589 590


class SARLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
591
    def __init__(self, character_dict_path=None, use_space_char=False,
A
andyjpaddle 已提交
592 593
                 **kwargs):
        super(SARLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
594
                                             use_space_char)
A
andyjpaddle 已提交
595

A
andyjpaddle 已提交
596
        self.rm_symbol = kwargs.get('rm_symbol', False)
A
andyjpaddle 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1
        return dict_character

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
A
andyjpaddle 已提交
615

A
andyjpaddle 已提交
616 617 618 619 620 621 622 623
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(self.end_idx):
A
andyjpaddle 已提交
624
                    if text_prob is None and idx == 0:
A
andyjpaddle 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
                        continue
                    else:
                        break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
640 641 642 643
            if self.rm_symbol:
                comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]')
                text = text.lower()
                text = comp.sub('', text)
644
            result_list.append((text, np.mean(conf_list).tolist()))
A
andyjpaddle 已提交
645 646 647 648 649 650 651
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
A
andyjpaddle 已提交
652

A
andyjpaddle 已提交
653 654 655 656 657 658 659 660 661
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)

        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label

    def get_ignored_tokens(self):
        return [self.padding_idx]
662 663


A
andyjpaddle 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
class DistillationSARLabelDecode(SARLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 use_space_char=False,
                 model_name=["student"],
                 key=None,
                 multi_head=False,
                 **kwargs):
        super(DistillationSARLabelDecode, self).__init__(character_dict_path,
                                                         use_space_char)
        if not isinstance(model_name, list):
            model_name = [model_name]
        self.model_name = model_name

        self.key = key
        self.multi_head = multi_head

    def __call__(self, preds, label=None, *args, **kwargs):
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
            if self.multi_head and isinstance(pred, dict):
                pred = pred['sar']
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output


698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
class PRENLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(PRENLabelDecode, self).__init__(character_dict_path,
                                              use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def decode(self, text_index, text_prob=None):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] == self.end_idx:
                    break
                if text_index[batch_idx][idx] in \
                    [self.padding_idx, self.unknown_idx]:
                    continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
            if len(text) > 0:
741
                result_list.append((text, np.mean(conf_list).tolist()))
742 743 744 745 746 747 748 749 750 751 752 753 754 755
            else:
                # here confidence of empty recog result is 1
                result_list.append(('', 1))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.decode(preds_idx, preds_prob)
        if label is None:
            return text
        label = self.decode(label)
        return text, label
A
add vl  
andyjpaddle 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822


class VLLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(VLLabelDecode, self).__init__(character_dict_path, use_space_char)

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            selection = np.ones(len(text_index[batch_idx]), dtype=bool)
            if is_remove_duplicate:
                selection[1:] = text_index[batch_idx][1:] != text_index[
                    batch_idx][:-1]
            for ignored_token in ignored_tokens:
                selection &= text_index[batch_idx] != ignored_token

            char_list = [
                self.character[text_id - 1]
                for text_id in text_index[batch_idx][selection]
            ]
            if text_prob is not None:
                conf_list = text_prob[batch_idx][selection]
            else:
                conf_list = [1] * len(selection)
            if len(conf_list) == 0:
                conf_list = [0]

            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list).tolist()))
        return result_list

    def __call__(self, preds, label=None, length=None, *args, **kwargs):
        if len(preds) == 2:  # eval mode
            net_out, length = preds
        else:  # train mode
            net_out = preds[0]
            length = length
            net_out = paddle.concat([t[:l] for t, l in zip(net_out, length)])
        text = []
        if not isinstance(net_out, paddle.Tensor):
            net_out = paddle.to_tensor(net_out, dtype='float32')
        # import pdb 
        # pdb.set_trace()
        net_out = F.softmax(net_out, axis=1)
        for i in range(0, length.shape[0]):
            preds_idx = net_out[int(length[:i].sum()):int(length[:i].sum(
            ) + length[i])].topk(1)[1][:, 0].tolist()
            preds_text = ''.join([
                self.character[idx - 1]
                if idx > 0 and idx <= len(self.character) else ''
                for idx in preds_idx
            ])
            preds_prob = net_out[int(length[:i].sum()):int(length[:i].sum(
            ) + length[i])].topk(1)[0][:, 0]
            preds_prob = paddle.exp(
                paddle.log(preds_prob).sum() / (preds_prob.shape[0] + 1e-6))
            text.append((preds_text, preds_prob))
        if label is None:
            return text
        label = self.decode(label)
        return text, label