rec_postprocess.py 28.9 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

W
WenmuZhou 已提交
15 16 17
import numpy as np
import paddle
from paddle.nn import functional as F
A
andyjpaddle 已提交
18
import re
W
WenmuZhou 已提交
19 20 21 22 23


class BaseRecLabelDecode(object):
    """ Convert between text-label and text-index """

T
tink2123 已提交
24
    def __init__(self, character_dict_path=None, use_space_char=False):
T
tink2123 已提交
25 26 27
        self.beg_str = "sos"
        self.end_str = "eos"

T
tink2123 已提交
28 29
        self.character_str = []
        if character_dict_path is None:
A
add vl  
andyjpaddle 已提交
30
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
W
WenmuZhou 已提交
31
            dict_character = list(self.character_str)
T
tink2123 已提交
32
        else:
W
WenmuZhou 已提交
33 34 35 36
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
W
WenmuZhou 已提交
37
                    self.character_str.append(line)
W
WenmuZhou 已提交
38
            if use_space_char:
W
WenmuZhou 已提交
39
                self.character_str.append(" ")
W
WenmuZhou 已提交
40
            dict_character = list(self.character_str)
T
tink2123 已提交
41

W
WenmuZhou 已提交
42 43 44 45 46 47 48 49 50
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

L
littletomatodonkey 已提交
51
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
W
WenmuZhou 已提交
52 53 54 55 56
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
            selection = np.ones(len(text_index[batch_idx]), dtype=bool)
            if is_remove_duplicate:
                selection[1:] = text_index[batch_idx][1:] != text_index[
                    batch_idx][:-1]
            for ignored_token in ignored_tokens:
                selection &= text_index[batch_idx] != ignored_token

            char_list = [
                self.character[text_id]
                for text_id in text_index[batch_idx][selection]
            ]
            if text_prob is not None:
                conf_list = text_prob[batch_idx][selection]
            else:
                conf_list = [1] * len(selection)
            if len(conf_list) == 0:
                conf_list = [0]

W
WenmuZhou 已提交
75
            text = ''.join(char_list)
76
            result_list.append((text, np.mean(conf_list).tolist()))
W
WenmuZhou 已提交
77 78 79 80 81 82 83 84 85
        return result_list

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


class CTCLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
86
    def __init__(self, character_dict_path=None, use_space_char=False,
W
WenmuZhou 已提交
87 88
                 **kwargs):
        super(CTCLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
89
                                             use_space_char)
W
WenmuZhou 已提交
90 91

    def __call__(self, preds, label=None, *args, **kwargs):
L
LDOUBLEV 已提交
92
        if isinstance(preds, tuple) or isinstance(preds, list):
93
            preds = preds[-1]
W
WenmuZhou 已提交
94 95
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
W
WenmuZhou 已提交
96 97
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
W
WenmuZhou 已提交
98
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
W
WenmuZhou 已提交
99 100
        if label is None:
            return text
L
littletomatodonkey 已提交
101
        label = self.decode(label)
W
WenmuZhou 已提交
102 103 104 105 106 107 108
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


littletomatodonkey's avatar
littletomatodonkey 已提交
109 110 111 112 113 114 115 116 117
class DistillationCTCLabelDecode(CTCLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 use_space_char=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
118
                 model_name=["student"],
119
                 key=None,
A
andyjpaddle 已提交
120
                 multi_head=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
121
                 **kwargs):
T
tink2123 已提交
122 123
        super(DistillationCTCLabelDecode, self).__init__(character_dict_path,
                                                         use_space_char)
littletomatodonkey's avatar
littletomatodonkey 已提交
124 125
        if not isinstance(model_name, list):
            model_name = [model_name]
littletomatodonkey's avatar
littletomatodonkey 已提交
126
        self.model_name = model_name
littletomatodonkey's avatar
littletomatodonkey 已提交
127

128
        self.key = key
A
andyjpaddle 已提交
129
        self.multi_head = multi_head
littletomatodonkey's avatar
littletomatodonkey 已提交
130 131

    def __call__(self, preds, label=None, *args, **kwargs):
littletomatodonkey's avatar
littletomatodonkey 已提交
132 133 134 135 136
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
A
andyjpaddle 已提交
137 138
            if self.multi_head and isinstance(pred, dict):
                pred = pred['ctc']
littletomatodonkey's avatar
littletomatodonkey 已提交
139 140
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output
littletomatodonkey's avatar
littletomatodonkey 已提交
141 142


W
WenmuZhou 已提交
143 144 145
class AttnLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
146
    def __init__(self, character_dict_path=None, use_space_char=False,
W
WenmuZhou 已提交
147 148
                 **kwargs):
        super(AttnLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
149
                                              use_space_char)
W
WenmuZhou 已提交
150 151

    def add_special_char(self, dict_character):
L
LDOUBLEV 已提交
152 153 154 155
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character
        dict_character = [self.beg_str] + dict_character + [self.end_str]
W
WenmuZhou 已提交
156 157
        return dict_character

L
LDOUBLEV 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        [beg_idx, end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
A
andyjpaddle 已提交
177 178
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
L
LDOUBLEV 已提交
179 180 181 182 183
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
184
            result_list.append((text, np.mean(conf_list).tolist()))
L
LDOUBLEV 已提交
185 186
        return result_list

L
LDOUBLEV 已提交
187 188
    def __call__(self, preds, label=None, *args, **kwargs):
        """
W
WenmuZhou 已提交
189
        text = self.decode(text)
L
LDOUBLEV 已提交
190 191 192 193 194 195 196 197 198 199 200
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
L
LDOUBLEV 已提交
201
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
L
LDOUBLEV 已提交
202 203
        if label is None:
            return text
L
LDOUBLEV 已提交
204
        label = self.decode(label, is_remove_duplicate=False)
L
LDOUBLEV 已提交
205 206
        return text, label

W
WenmuZhou 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219
    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
M
MissPenguin 已提交
220
        return idx
T
tink2123 已提交
221 222


T
tink2123 已提交
223 224 225
class SEEDLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
226
    def __init__(self, character_dict_path=None, use_space_char=False,
T
tink2123 已提交
227 228
                 **kwargs):
        super(SEEDLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
229
                                              use_space_char)
T
tink2123 已提交
230 231

    def add_special_char(self, dict_character):
T
tink2123 已提交
232
        self.padding_str = "padding"
T
tink2123 已提交
233
        self.end_str = "eos"
T
tink2123 已提交
234 235 236 237
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding_str, self.unknown
        ]
T
tink2123 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        return dict_character

    def get_ignored_tokens(self):
        end_idx = self.get_beg_end_flag_idx("eos")
        return [end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "sos":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "eos":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" % beg_or_end
        return idx

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        [end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
276
            result_list.append((text, np.mean(conf_list).tolist()))
T
tink2123 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        """
        text = self.decode(text)
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        preds_idx = preds["rec_pred"]
        if isinstance(preds_idx, paddle.Tensor):
            preds_idx = preds_idx.numpy()
        if "rec_pred_scores" in preds:
            preds_idx = preds["rec_pred"]
            preds_prob = preds["rec_pred_scores"]
        else:
            preds_idx = preds["rec_pred"].argmax(axis=2)
            preds_prob = preds["rec_pred"].max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label


T
tink2123 已提交
304 305 306
class SRNLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
307
    def __init__(self, character_dict_path=None, use_space_char=False,
T
tink2123 已提交
308 309
                 **kwargs):
        super(SRNLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
310
                                             use_space_char)
311
        self.max_text_length = kwargs.get('max_text_length', 25)
T
tink2123 已提交
312 313 314 315 316 317 318 319 320 321 322

    def __call__(self, preds, label=None, *args, **kwargs):
        pred = preds['predict']
        char_num = len(self.character_str) + 2
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = np.reshape(pred, [-1, char_num])

        preds_idx = np.argmax(pred, axis=1)
        preds_prob = np.max(pred, axis=1)

323
        preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
T
tink2123 已提交
324

325
        preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
T
tink2123 已提交
326

T
tink2123 已提交
327
        text = self.decode(preds_idx, preds_prob)
T
tink2123 已提交
328 329

        if label is None:
L
LDOUBLEV 已提交
330
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
T
tink2123 已提交
331
            return text
T
tink2123 已提交
332
        label = self.decode(label)
T
tink2123 已提交
333 334
        return text, label

L
LDOUBLEV 已提交
335
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
T
tink2123 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
360
            result_list.append((text, np.mean(conf_list).tolist()))
T
tink2123 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
        return result_list

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
W
WenmuZhou 已提交
381 382


A
andyjpaddle 已提交
383 384 385
class SARLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
386
    def __init__(self, character_dict_path=None, use_space_char=False,
A
andyjpaddle 已提交
387 388
                 **kwargs):
        super(SARLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
389
                                             use_space_char)
A
andyjpaddle 已提交
390

A
andyjpaddle 已提交
391
        self.rm_symbol = kwargs.get('rm_symbol', False)
A
andyjpaddle 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1
        return dict_character

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
A
andyjpaddle 已提交
410

A
andyjpaddle 已提交
411 412 413 414 415 416 417 418
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(self.end_idx):
A
andyjpaddle 已提交
419
                    if text_prob is None and idx == 0:
A
andyjpaddle 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
                        continue
                    else:
                        break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
435 436 437 438
            if self.rm_symbol:
                comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]')
                text = text.lower()
                text = comp.sub('', text)
439
            result_list.append((text, np.mean(conf_list).tolist()))
A
andyjpaddle 已提交
440 441 442 443 444 445 446
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
A
andyjpaddle 已提交
447

A
andyjpaddle 已提交
448 449 450 451 452 453 454 455 456
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)

        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label

    def get_ignored_tokens(self):
        return [self.padding_idx]
457 458


A
andyjpaddle 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
class DistillationSARLabelDecode(SARLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 use_space_char=False,
                 model_name=["student"],
                 key=None,
                 multi_head=False,
                 **kwargs):
        super(DistillationSARLabelDecode, self).__init__(character_dict_path,
                                                         use_space_char)
        if not isinstance(model_name, list):
            model_name = [model_name]
        self.model_name = model_name

        self.key = key
        self.multi_head = multi_head

    def __call__(self, preds, label=None, *args, **kwargs):
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
            if self.multi_head and isinstance(pred, dict):
                pred = pred['sar']
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output


493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
class PRENLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(PRENLabelDecode, self).__init__(character_dict_path,
                                              use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def decode(self, text_index, text_prob=None):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] == self.end_idx:
                    break
                if text_index[batch_idx][idx] in \
                    [self.padding_idx, self.unknown_idx]:
                    continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
            if len(text) > 0:
536
                result_list.append((text, np.mean(conf_list).tolist()))
537 538 539 540 541 542 543 544 545 546 547 548 549 550
            else:
                # here confidence of empty recog result is 1
                result_list.append(('', 1))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.decode(preds_idx, preds_prob)
        if label is None:
            return text
        label = self.decode(label)
        return text, label
A
add vl  
andyjpaddle 已提交
551 552


553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
class NRTRLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=True, **kwargs):
        super(NRTRLabelDecode, self).__init__(character_dict_path,
                                              use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):

        if len(preds) == 2:
            preds_id = preds[0]
            preds_prob = preds[1]
            if isinstance(preds_id, paddle.Tensor):
                preds_id = preds_id.numpy()
            if isinstance(preds_prob, paddle.Tensor):
                preds_prob = preds_prob.numpy()
            if preds_id[0][0] == 2:
                preds_idx = preds_id[:, 1:]
                preds_prob = preds_prob[:, 1:]
            else:
                preds_idx = preds_id
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
            if label is None:
                return text
            label = self.decode(label[:, 1:])
        else:
            if isinstance(preds, paddle.Tensor):
                preds = preds.numpy()
            preds_idx = preds.argmax(axis=2)
            preds_prob = preds.max(axis=2)
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
            if label is None:
                return text
            label = self.decode(label[:, 1:])
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
        return dict_character

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                try:
                    char_idx = self.character[int(text_index[batch_idx][idx])]
                except:
                    continue
                if char_idx == '</s>':  # end
                    break
                char_list.append(char_idx)
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text.lower(), np.mean(conf_list).tolist()))
        return result_list


class ViTSTRLabelDecode(NRTRLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(ViTSTRLabelDecode, self).__init__(character_dict_path,
                                                use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, paddle.Tensor):
            preds = preds[:, 1:].numpy()
        else:
            preds = preds[:, 1:]
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
        if label is None:
            return text
        label = self.decode(label[:, 1:])
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['<s>', '</s>'] + dict_character
        return dict_character


class ABINetLabelDecode(NRTRLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(ABINetLabelDecode, self).__init__(character_dict_path,
                                                use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, dict):
            preds = preds['align'][-1].numpy()
        elif isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        else:
            preds = preds

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
        if label is None:
            return text
        label = self.decode(label)
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['</s>'] + dict_character
        return dict_character
A
add vl  
andyjpaddle 已提交
670 671


672
class SPINLabelDecode(AttnLabelDecode):
xuyang2233's avatar
add pr  
xuyang2233 已提交
673 674 675 676
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
677
        super(SPINLabelDecode, self).__init__(character_dict_path,
xuyang2233's avatar
add pr  
xuyang2233 已提交
678 679 680 681 682 683 684
                                              use_space_char)

    def add_special_char(self, dict_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character
        dict_character = [self.beg_str] + [self.end_str] + dict_character
685 686 687
        return dict_character


A
add vl  
andyjpaddle 已提交
688 689 690 691 692 693
class VLLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(VLLabelDecode, self).__init__(character_dict_path, use_space_char)
A
andyjpaddle 已提交
694 695
        self.max_text_length = kwargs.get('max_text_length', 25)
        self.nclass = len(self.character) + 1
A
add vl  
andyjpaddle 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            selection = np.ones(len(text_index[batch_idx]), dtype=bool)
            if is_remove_duplicate:
                selection[1:] = text_index[batch_idx][1:] != text_index[
                    batch_idx][:-1]
            for ignored_token in ignored_tokens:
                selection &= text_index[batch_idx] != ignored_token

            char_list = [
                self.character[text_id - 1]
                for text_id in text_index[batch_idx][selection]
            ]
            if text_prob is not None:
                conf_list = text_prob[batch_idx][selection]
            else:
                conf_list = [1] * len(selection)
            if len(conf_list) == 0:
                conf_list = [0]

            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list).tolist()))
        return result_list

    def __call__(self, preds, label=None, length=None, *args, **kwargs):
        if len(preds) == 2:  # eval mode
A
andyjpaddle 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
            text_pre, x = preds
            b = text_pre.shape[1]
            lenText = self.max_text_length
            nsteps = self.max_text_length

            if not isinstance(text_pre, paddle.Tensor):
                text_pre = paddle.to_tensor(text_pre, dtype='float32')

            out_res = paddle.zeros(
                shape=[lenText, b, self.nclass], dtype=x.dtype)
            out_length = paddle.zeros(shape=[b], dtype=x.dtype)
            now_step = 0
            for _ in range(nsteps):
                if 0 in out_length and now_step < nsteps:
                    tmp_result = text_pre[now_step, :, :]
                    out_res[now_step] = tmp_result
                    tmp_result = tmp_result.topk(1)[1].squeeze(axis=1)
                    for j in range(b):
                        if out_length[j] == 0 and tmp_result[j] == 0:
                            out_length[j] = now_step + 1
                    now_step += 1
            for j in range(0, b):
                if int(out_length[j]) == 0:
                    out_length[j] = nsteps
            start = 0
            output = paddle.zeros(
                shape=[int(out_length.sum()), self.nclass], dtype=x.dtype)
            for i in range(0, b):
                cur_length = int(out_length[i])
                output[start:start + cur_length] = out_res[0:cur_length, i, :]
                start += cur_length
            net_out = output
            length = out_length

A
add vl  
andyjpaddle 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
        else:  # train mode
            net_out = preds[0]
            length = length
            net_out = paddle.concat([t[:l] for t, l in zip(net_out, length)])
        text = []
        if not isinstance(net_out, paddle.Tensor):
            net_out = paddle.to_tensor(net_out, dtype='float32')
        net_out = F.softmax(net_out, axis=1)
        for i in range(0, length.shape[0]):
            preds_idx = net_out[int(length[:i].sum()):int(length[:i].sum(
            ) + length[i])].topk(1)[1][:, 0].tolist()
            preds_text = ''.join([
                self.character[idx - 1]
                if idx > 0 and idx <= len(self.character) else ''
                for idx in preds_idx
            ])
            preds_prob = net_out[int(length[:i].sum()):int(length[:i].sum(
            ) + length[i])].topk(1)[0][:, 0]
            preds_prob = paddle.exp(
                paddle.log(preds_prob).sum() / (preds_prob.shape[0] + 1e-6))
            text.append((preds_text, preds_prob))
        if label is None:
            return text
        label = self.decode(label)
        return text, label