save_load.py 8.1 KB
Newer Older
L
LDOUBLEV 已提交
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18 19 20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import errno
import os
W
WenmuZhou 已提交
21 22
import pickle
import six
L
LDOUBLEV 已提交
23

W
WenmuZhou 已提交
24
import paddle
L
LDOUBLEV 已提交
25

littletomatodonkey's avatar
littletomatodonkey 已提交
26 27
from ppocr.utils.logging import get_logger

28
__all__ = ['load_model']
L
LDOUBLEV 已提交
29 30


W
WenmuZhou 已提交
31
def _mkdir_if_not_exist(path, logger):
L
LDOUBLEV 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


47
def load_model(config, model, optimizer=None, model_type='det'):
L
LDOUBLEV 已提交
48 49 50
    """
    load model from checkpoint or pretrained_model
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
51
    logger = get_logger()
Y
YukSing 已提交
52 53 54
    global_config = config['Global']
    checkpoints = global_config.get('checkpoints')
    pretrained_model = global_config.get('pretrained_model')
W
WenmuZhou 已提交
55
    best_model_dict = {}
56
    is_float16 = False
57 58

    if model_type == 'vqa':
littletomatodonkey's avatar
littletomatodonkey 已提交
59
        # NOTE: for vqa model dsitillation, resume training is not supported now
littletomatodonkey's avatar
littletomatodonkey 已提交
60 61
        if config["Architecture"]["algorithm"] in ["Distillation"]:
            return best_model_dict
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        checkpoints = config['Architecture']['Backbone']['checkpoints']
        # load vqa method metric
        if checkpoints:
            if os.path.exists(os.path.join(checkpoints, 'metric.states')):
                with open(os.path.join(checkpoints, 'metric.states'),
                          'rb') as f:
                    states_dict = pickle.load(f) if six.PY2 else pickle.load(
                        f, encoding='latin1')
                best_model_dict = states_dict.get('best_model_dict', {})
                if 'epoch' in states_dict:
                    best_model_dict['start_epoch'] = states_dict['epoch'] + 1
            logger.info("resume from {}".format(checkpoints))

            if optimizer is not None:
                if checkpoints[-1] in ['/', '\\']:
                    checkpoints = checkpoints[:-1]
                if os.path.exists(checkpoints + '.pdopt'):
                    optim_dict = paddle.load(checkpoints + '.pdopt')
                    optimizer.set_state_dict(optim_dict)
                else:
                    logger.warning(
                        "{}.pdopt is not exists, params of optimizer is not loaded".
                        format(checkpoints))
littletomatodonkey's avatar
littletomatodonkey 已提交
85

86 87
        return best_model_dict

L
LDOUBLEV 已提交
88
    if checkpoints:
89
        if checkpoints.endswith('.pdparams'):
90
            checkpoints = checkpoints.replace('.pdparams', '')
91
        assert os.path.exists(checkpoints + ".pdparams"), \
文幕地方's avatar
文幕地方 已提交
92
            "The {}.pdparams does not exists!".format(checkpoints)
93

94 95 96 97 98 99
        # load params from trained model
        params = paddle.load(checkpoints + '.pdparams')
        state_dict = model.state_dict()
        new_state_dict = {}
        for key, value in state_dict.items():
            if key not in params:
100 101
                logger.warning("{} not in loaded params {} !".format(
                    key, params.keys()))
文幕地方's avatar
文幕地方 已提交
102
                continue
103
            pre_value = params[key]
104 105
            if pre_value.dtype == paddle.float16:
                is_float16 = True
文幕地方's avatar
文幕地方 已提交
106 107
            if pre_value.dtype != value.dtype:
                pre_value = pre_value.astype(value.dtype)
108 109 110 111
            if list(value.shape) == list(pre_value.shape):
                new_state_dict[key] = pre_value
            else:
                logger.warning(
112 113
                    "The shape of model params {} {} not matched with loaded params shape {} !".
                    format(key, value.shape, pre_value.shape))
114
        model.set_state_dict(new_state_dict)
115 116 117 118
        if is_float16:
            logger.info(
                "The parameter type is float16, which is converted to float32 when loading"
            )
W
WenmuZhou 已提交
119
        if optimizer is not None:
文幕地方's avatar
文幕地方 已提交
120 121 122 123 124 125 126
            if os.path.exists(checkpoints + '.pdopt'):
                optim_dict = paddle.load(checkpoints + '.pdopt')
                optimizer.set_state_dict(optim_dict)
            else:
                logger.warning(
                    "{}.pdopt is not exists, params of optimizer is not loaded".
                    format(checkpoints))
W
WenmuZhou 已提交
127 128 129 130 131 132 133 134 135 136

        if os.path.exists(checkpoints + '.states'):
            with open(checkpoints + '.states', 'rb') as f:
                states_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
            best_model_dict = states_dict.get('best_model_dict', {})
            if 'epoch' in states_dict:
                best_model_dict['start_epoch'] = states_dict['epoch'] + 1
        logger.info("resume from {}".format(checkpoints))
    elif pretrained_model:
137
        is_float16 = load_pretrained_params(model, pretrained_model)
138
    else:
W
WenmuZhou 已提交
139
        logger.info('train from scratch')
140
    best_model_dict['is_float16'] = is_float16
W
WenmuZhou 已提交
141
    return best_model_dict
L
LDOUBLEV 已提交
142 143


L
fix bug  
LDOUBLEV 已提交
144
def load_pretrained_params(model, path):
145
    logger = get_logger()
146
    if path.endswith('.pdparams'):
147 148
        path = path.replace('.pdparams', '')
    assert os.path.exists(path + ".pdparams"), \
文幕地方's avatar
文幕地方 已提交
149
        "The {}.pdparams does not exists!".format(path)
150 151

    params = paddle.load(path + '.pdparams')
X
xiaoting 已提交
152

L
fix bug  
LDOUBLEV 已提交
153
    state_dict = model.state_dict()
X
xiaoting 已提交
154

L
fix bug  
LDOUBLEV 已提交
155
    new_state_dict = {}
156
    is_float16 = False
X
xiaoting 已提交
157
    
T
tink2123 已提交
158
    for k1 in params.keys():
X
xiaoting 已提交
159

T
tink2123 已提交
160 161
        if k1 not in state_dict.keys():
            logger.warning("The pretrained params {} not in model".format(k1))
L
LDOUBLEV 已提交
162
        else:
163 164
            if params[k1].dtype == paddle.float16:
                is_float16 = True
文幕地方's avatar
文幕地方 已提交
165 166
            if params[k1].dtype != state_dict[k1].dtype:
                params[k1] = params[k1].astype(state_dict[k1].dtype)
T
tink2123 已提交
167 168 169 170 171 172
            if list(state_dict[k1].shape) == list(params[k1].shape):
                new_state_dict[k1] = params[k1]
            else:
                logger.warning(
                    "The shape of model params {} {} not matched with loaded params {} {} !".
                    format(k1, state_dict[k1].shape, k1, params[k1].shape))
173

L
fix bug  
LDOUBLEV 已提交
174
    model.set_state_dict(new_state_dict)
175 176 177 178
    if is_float16:
        logger.info(
            "The parameter type is float16, which is converted to float32 when loading"
        )
179
    logger.info("load pretrain successful from {}".format(path))
180
    return is_float16
D
Double_V 已提交
181

182

183
def save_model(model,
W
WenmuZhou 已提交
184 185 186
               optimizer,
               model_path,
               logger,
187
               config,
W
WenmuZhou 已提交
188 189 190
               is_best=False,
               prefix='ppocr',
               **kwargs):
L
LDOUBLEV 已提交
191 192 193
    """
    save model to the target path
    """
W
WenmuZhou 已提交
194 195
    _mkdir_if_not_exist(model_path, logger)
    model_prefix = os.path.join(model_path, prefix)
littletomatodonkey's avatar
littletomatodonkey 已提交
196
    paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
197 198 199
    if config['Architecture']["model_type"] != 'vqa':
        paddle.save(model.state_dict(), model_prefix + '.pdparams')
        metric_prefix = model_prefix
littletomatodonkey's avatar
littletomatodonkey 已提交
200
    else:  # for vqa system, we follow the save/load rules in NLP
201
        if config['Global']['distributed']:
littletomatodonkey's avatar
littletomatodonkey 已提交
202
            arch = model._layers
203
        else:
littletomatodonkey's avatar
littletomatodonkey 已提交
204 205 206 207
            arch = model
        if config["Architecture"]["algorithm"] in ["Distillation"]:
            arch = arch.Student
        arch.backbone.model.save_pretrained(model_prefix)
208
        metric_prefix = os.path.join(model_prefix, 'metric')
W
WenmuZhou 已提交
209
    # save metric and config
Z
zhoujun 已提交
210 211
    with open(metric_prefix + '.states', 'wb') as f:
        pickle.dump(kwargs, f, protocol=2)
W
WenmuZhou 已提交
212 213 214 215
    if is_best:
        logger.info('save best model is to {}'.format(model_prefix))
    else:
        logger.info("save model in {}".format(model_prefix))