save_load.py 5.0 KB
Newer Older
L
LDOUBLEV 已提交
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18 19 20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import errno
import os
W
WenmuZhou 已提交
21 22
import pickle
import six
L
LDOUBLEV 已提交
23

W
WenmuZhou 已提交
24
import paddle
L
LDOUBLEV 已提交
25

littletomatodonkey's avatar
littletomatodonkey 已提交
26 27
from ppocr.utils.logging import get_logger

28
__all__ = ['load_model']
L
LDOUBLEV 已提交
29 30


W
WenmuZhou 已提交
31
def _mkdir_if_not_exist(path, logger):
L
LDOUBLEV 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


47
def load_model(config, model, optimizer=None):
L
LDOUBLEV 已提交
48 49 50
    """
    load model from checkpoint or pretrained_model
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
51
    logger = get_logger()
Y
YukSing 已提交
52 53 54
    global_config = config['Global']
    checkpoints = global_config.get('checkpoints')
    pretrained_model = global_config.get('pretrained_model')
W
WenmuZhou 已提交
55
    best_model_dict = {}
L
LDOUBLEV 已提交
56
    if checkpoints:
57 58
        if checkpoints.endswith('pdparams'):
            checkpoints = checkpoints.replace('.pdparams', '')
59
        assert os.path.exists(checkpoints + ".pdparams"), \
60 61
            "The {}.pdparams does not exists!".format(checkpoints)

62 63 64 65 66 67
        # load params from trained model
        params = paddle.load(checkpoints + '.pdparams')
        state_dict = model.state_dict()
        new_state_dict = {}
        for key, value in state_dict.items():
            if key not in params:
68 69
                logger.warning("{} not in loaded params {} !".format(
                    key, params.keys()))
70 71 72 73 74
            pre_value = params[key]
            if list(value.shape) == list(pre_value.shape):
                new_state_dict[key] = pre_value
            else:
                logger.warning(
75 76
                    "The shape of model params {} {} not matched with loaded params shape {} !".
                    format(key, value.shape, pre_value.shape))
77 78
        model.set_state_dict(new_state_dict)

79
        optim_dict = paddle.load(checkpoints + '.pdopt')
W
WenmuZhou 已提交
80
        if optimizer is not None:
81
            optimizer.set_state_dict(optim_dict)
W
WenmuZhou 已提交
82 83 84 85 86 87 88 89 90 91

        if os.path.exists(checkpoints + '.states'):
            with open(checkpoints + '.states', 'rb') as f:
                states_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
            best_model_dict = states_dict.get('best_model_dict', {})
            if 'epoch' in states_dict:
                best_model_dict['start_epoch'] = states_dict['epoch'] + 1
        logger.info("resume from {}".format(checkpoints))
    elif pretrained_model:
92
        load_pretrained_params(model, pretrained_model)
93
    else:
W
WenmuZhou 已提交
94 95
        logger.info('train from scratch')
    return best_model_dict
L
LDOUBLEV 已提交
96 97


L
fix bug  
LDOUBLEV 已提交
98
def load_pretrained_params(model, path):
99 100 101 102
    logger = get_logger()
    if path.endswith('pdparams'):
        path = path.replace('.pdparams', '')
    assert os.path.exists(path + ".pdparams"), \
103
        "The {}.pdparams does not exists!".format(path)
104 105

    params = paddle.load(path + '.pdparams')
L
fix bug  
LDOUBLEV 已提交
106 107 108 109 110
    state_dict = model.state_dict()
    new_state_dict = {}
    for k1, k2 in zip(state_dict.keys(), params.keys()):
        if list(state_dict[k1].shape) == list(params[k2].shape):
            new_state_dict[k1] = params[k2]
L
LDOUBLEV 已提交
111
        else:
112
            logger.warning(
113 114
                "The shape of model params {} {} not matched with loaded params {} {} !".
                format(k1, state_dict[k1].shape, k2, params[k2].shape))
L
fix bug  
LDOUBLEV 已提交
115
    model.set_state_dict(new_state_dict)
116
    logger.info("load pretrain successful from {}".format(path))
L
LDOUBLEV 已提交
117
    return model
D
Double_V 已提交
118

119

120
def save_model(model,
W
WenmuZhou 已提交
121 122 123 124 125 126
               optimizer,
               model_path,
               logger,
               is_best=False,
               prefix='ppocr',
               **kwargs):
L
LDOUBLEV 已提交
127 128 129
    """
    save model to the target path
    """
W
WenmuZhou 已提交
130 131
    _mkdir_if_not_exist(model_path, logger)
    model_prefix = os.path.join(model_path, prefix)
132
    paddle.save(model.state_dict(), model_prefix + '.pdparams')
W
WenmuZhou 已提交
133
    paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
W
WenmuZhou 已提交
134 135 136 137 138 139 140 141

    # save metric and config
    with open(model_prefix + '.states', 'wb') as f:
        pickle.dump(kwargs, f, protocol=2)
    if is_best:
        logger.info('save best model is to {}'.format(model_prefix))
    else:
        logger.info("save model in {}".format(model_prefix))