predict_rec.py 11.0 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
W
WenmuZhou 已提交
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
23 24 25 26
import cv2
import numpy as np
import math
import time
W
WenmuZhou 已提交
27
import traceback
T
tink2123 已提交
28
import paddle
29 30

import tools.infer.utility as utility
L
LDOUBLEV 已提交
31
import tools.infer.benchmark_utils as benchmark_utils
W
WenmuZhou 已提交
32 33
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
34
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
35

W
WenmuZhou 已提交
36 37
logger = get_logger()

L
LDOUBLEV 已提交
38 39 40

class TextRecognizer(object):
    def __init__(self, args):
41
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
D
dyning 已提交
42
        self.character_type = args.rec_char_type
43
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
44
        self.rec_algorithm = args.rec_algorithm
W
WenmuZhou 已提交
45 46
        postprocess_params = {
            'name': 'CTCLabelDecode',
T
tink2123 已提交
47
            "character_type": args.rec_char_type,
48
            "character_dict_path": args.rec_char_dict_path,
W
WenmuZhou 已提交
49
            "use_space_char": args.use_space_char
T
tink2123 已提交
50
        }
T
tink2123 已提交
51 52 53
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
W
WenmuZhou 已提交
54 55 56 57 58 59 60
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
T
tink2123 已提交
61 62 63 64
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
W
WenmuZhou 已提交
65
        self.postprocess_op = build_post_process(postprocess_params)
L
LDOUBLEV 已提交
66
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
W
WenmuZhou 已提交
67
            utility.create_predictor(args, 'rec', logger)
L
LDOUBLEV 已提交
68

69
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
70
        imgC, imgH, imgW = self.rec_image_shape
71
        assert imgC == img.shape[2]
72
        if self.character_type == "ch":
T
tink2123 已提交
73
            imgW = int((32 * max_wh_ratio))
74
        h, w = img.shape[:2]
75 76 77 78 79
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
T
tink2123 已提交
80
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
81 82 83 84 85 86 87 88
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

T
tink2123 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

L
LDOUBLEV 已提交
161 162
    def __call__(self, img_list):
        img_num = len(img_list)
163
        # Calculate the aspect ratio of all text bars
164 165 166
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
167
        # Sorting can speed up the recognition process
168 169
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
170
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
171
        st = time.time()
L
LDOUBLEV 已提交
172 173 174
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
175
            max_wh_ratio = 0
L
LDOUBLEV 已提交
176
            for ino in range(beg_img_no, end_img_no):
177
                h, w = img_list[indices[ino]].shape[0:2]
178 179 180
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
T
tink2123 已提交
181 182 183 184 185 186
                if self.rec_algorithm != "SRN":
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
L
LDOUBLEV 已提交
187 188
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
T
tink2123 已提交
189 190 191 192 193 194 195 196 197
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
L
LDOUBLEV 已提交
198 199
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
T
tink2123 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
                input_names = self.predictor.get_input_names()
                for i in range(len(input_names)):
                    input_tensor = self.predictor.get_input_handle(input_names[
                        i])
                    input_tensor.copy_from_cpu(inputs[i])
                self.predictor.run()
L
LDOUBLEV 已提交
222
                self.rec_times.inference_time.end()
T
tink2123 已提交
223 224 225 226 227 228
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                preds = {"predict": outputs[2]}
            else:
L
LDOUBLEV 已提交
229 230
                self.rec_times.preprocess_time.end()
                self.rec_times.inference_time.start()
T
tink2123 已提交
231 232 233 234 235 236 237 238
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()

                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                preds = outputs[0]
W
WenmuZhou 已提交
239 240 241
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
L
LDOUBLEV 已提交
242 243
            self.rec_times.postprocess_time.end()
            self.rec_times.img_num += int(norm_img_batch.shape[0])
L
LDOUBLEV 已提交
244 245

        return rec_res, time.time() - st
L
LDOUBLEV 已提交
246 247


248
def main(args):
D
dyning 已提交
249
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
250 251 252
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
L
LDOUBLEV 已提交
253

L
LDOUBLEV 已提交
254 255 256 257 258 259
    # warmup 10 times
    if args.warmup:
        img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
        for i in range(10):
            res = text_recognizer([img])

D
Double_V 已提交
260 261
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0
    count = 0
L
LDOUBLEV 已提交
262 263

    for image_file in image_file_list:
L
LDOUBLEV 已提交
264 265 266
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
267 268 269 270 271
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
L
LDOUBLEV 已提交
272 273 274 275 276 277 278 279 280 281
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
282 283 284 285


if __name__ == "__main__":
    main(utility.parse_args())