basic_loss.py 4.8 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddle.nn import L1Loss
from paddle.nn import MSELoss as L2Loss
from paddle.nn import SmoothL1Loss


class CELoss(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
25
    def __init__(self, epsilon=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        super().__init__()
        if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
            epsilon = None
        self.epsilon = epsilon

    def _labelsmoothing(self, target, class_num):
        if target.shape[-1] != class_num:
            one_hot_target = F.one_hot(target, class_num)
        else:
            one_hot_target = target
        soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
        soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
        return soft_target

    def forward(self, x, label):
        loss_dict = {}
        if self.epsilon is not None:
            class_num = x.shape[-1]
            label = self._labelsmoothing(label, class_num)
            x = -F.log_softmax(x, axis=-1)
            loss = paddle.sum(x * label, axis=-1)
        else:
            if label.shape[-1] == x.shape[-1]:
                label = F.softmax(label, axis=-1)
                soft_label = True
            else:
                soft_label = False
            loss = F.cross_entropy(x, label=label, soft_label=soft_label)
littletomatodonkey's avatar
littletomatodonkey 已提交
54
        return loss
littletomatodonkey's avatar
littletomatodonkey 已提交
55 56


L
LDOUBLEV 已提交
57 58
class KLJSLoss(object):
    def __init__(self, mode='kl'):
59 60
        assert mode in ['kl', 'js', 'KL', 'JS'
                        ], "mode can only be one of ['kl', 'js', 'KL', 'JS']"
L
LDOUBLEV 已提交
61 62 63 64
        self.mode = mode

    def __call__(self, p1, p2, reduction="mean"):

65
        loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5))
L
LDOUBLEV 已提交
66 67

        if self.mode.lower() == "js":
68 69
            loss += paddle.multiply(
                p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5))
L
LDOUBLEV 已提交
70 71
            loss *= 0.5
        if reduction == "mean":
72 73 74
            loss = paddle.mean(loss, axis=[1, 2])
        elif reduction == "none" or reduction is None:
            return loss
L
LDOUBLEV 已提交
75
        else:
76 77 78
            loss = paddle.sum(loss, axis=[1, 2])

        return loss
L
LDOUBLEV 已提交
79 80


littletomatodonkey's avatar
littletomatodonkey 已提交
81 82 83 84 85
class DMLLoss(nn.Layer):
    """
    DMLLoss
    """

86
    def __init__(self, act=None, use_log=False):
littletomatodonkey's avatar
littletomatodonkey 已提交
87
        super().__init__()
88 89 90 91 92 93 94 95
        if act is not None:
            assert act in ["softmax", "sigmoid"]
        if act == "softmax":
            self.act = nn.Softmax(axis=-1)
        elif act == "sigmoid":
            self.act = nn.Sigmoid()
        else:
            self.act = None
96 97

        self.use_log = use_log
L
LDOUBLEV 已提交
98
        self.jskl_loss = KLJSLoss(mode="js")
littletomatodonkey's avatar
littletomatodonkey 已提交
99

100 101 102 103 104 105 106
    def _kldiv(self, x, target):
        eps = 1.0e-10
        loss = target * (paddle.log(target + eps) - x)
        # batch mean loss
        loss = paddle.sum(loss) / loss.shape[0]
        return loss

littletomatodonkey's avatar
littletomatodonkey 已提交
107
    def forward(self, out1, out2):
108
        if self.act is not None:
A
andyjpaddle 已提交
109 110
            out1 = self.act(out1) + 1e-10
            out2 = self.act(out2) + 1e-10
111 112
        if self.use_log:
            # for recognition distillation, log is needed for feature map
L
LDOUBLEV 已提交
113 114
            log_out1 = paddle.log(out1)
            log_out2 = paddle.log(out2)
115 116
            loss = (
                self._kldiv(log_out1, out2) + self._kldiv(log_out2, out1)) / 2.0
L
LDOUBLEV 已提交
117
        else:
118
            # for detection distillation log is not needed
L
LDOUBLEV 已提交
119
            loss = self.jskl_loss(out1, out2)
littletomatodonkey's avatar
littletomatodonkey 已提交
120
        return loss
littletomatodonkey's avatar
littletomatodonkey 已提交
121 122 123 124 125 126 127 128


class DistanceLoss(nn.Layer):
    """
    DistanceLoss:
        mode: loss mode
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
129
    def __init__(self, mode="l2", **kargs):
130
        super().__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
131 132 133
        assert mode in ["l1", "l2", "smooth_l1"]
        if mode == "l1":
            self.loss_func = nn.L1Loss(**kargs)
134
        elif mode == "l2":
littletomatodonkey's avatar
littletomatodonkey 已提交
135 136 137 138 139
            self.loss_func = nn.MSELoss(**kargs)
        elif mode == "smooth_l1":
            self.loss_func = nn.SmoothL1Loss(**kargs)

    def forward(self, x, y):
littletomatodonkey's avatar
littletomatodonkey 已提交
140
        return self.loss_func(x, y)
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155


class LossFromOutput(nn.Layer):
    def __init__(self, key='loss', reduction='none'):
        super().__init__()
        self.key = key
        self.reduction = reduction

    def forward(self, predicts, batch):
        loss = predicts[self.key]
        if self.reduction == 'mean':
            loss = paddle.mean(loss)
        elif self.reduction == 'sum':
            loss = paddle.sum(loss)
        return {'loss': loss}