basic_loss.py 3.1 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddle.nn import L1Loss
from paddle.nn import MSELoss as L2Loss
from paddle.nn import SmoothL1Loss


class CELoss(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
25
    def __init__(self, epsilon=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        super().__init__()
        if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
            epsilon = None
        self.epsilon = epsilon

    def _labelsmoothing(self, target, class_num):
        if target.shape[-1] != class_num:
            one_hot_target = F.one_hot(target, class_num)
        else:
            one_hot_target = target
        soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
        soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
        return soft_target

    def forward(self, x, label):
        loss_dict = {}
        if self.epsilon is not None:
            class_num = x.shape[-1]
            label = self._labelsmoothing(label, class_num)
            x = -F.log_softmax(x, axis=-1)
            loss = paddle.sum(x * label, axis=-1)
        else:
            if label.shape[-1] == x.shape[-1]:
                label = F.softmax(label, axis=-1)
                soft_label = True
            else:
                soft_label = False
            loss = F.cross_entropy(x, label=label, soft_label=soft_label)
littletomatodonkey's avatar
littletomatodonkey 已提交
54
        return loss
littletomatodonkey's avatar
littletomatodonkey 已提交
55 56 57 58 59 60 61


class DMLLoss(nn.Layer):
    """
    DMLLoss
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
62
    def __init__(self, act=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
63
        super().__init__()
64 65 66 67 68 69 70 71
        if act is not None:
            assert act in ["softmax", "sigmoid"]
        if act == "softmax":
            self.act = nn.Softmax(axis=-1)
        elif act == "sigmoid":
            self.act = nn.Sigmoid()
        else:
            self.act = None
littletomatodonkey's avatar
littletomatodonkey 已提交
72 73

    def forward(self, out1, out2):
74 75 76 77 78 79
        if self.act is not None:
            out1 = self.act(out1)
            out2 = self.act(out2)

        log_out1 = paddle.log(out1)
        log_out2 = paddle.log(out2)
littletomatodonkey's avatar
littletomatodonkey 已提交
80
        loss = (F.kl_div(
81
            log_out1, out2, reduction='batchmean') + F.kl_div(
littletomatodonkey's avatar
littletomatodonkey 已提交
82
                log_out2, out1, reduction='batchmean')) / 2.0
littletomatodonkey's avatar
littletomatodonkey 已提交
83
        return loss
littletomatodonkey's avatar
littletomatodonkey 已提交
84 85 86 87 88 89 90 91


class DistanceLoss(nn.Layer):
    """
    DistanceLoss:
        mode: loss mode
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
92
    def __init__(self, mode="l2", **kargs):
93
        super().__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
94 95 96
        assert mode in ["l1", "l2", "smooth_l1"]
        if mode == "l1":
            self.loss_func = nn.L1Loss(**kargs)
97
        elif mode == "l2":
littletomatodonkey's avatar
littletomatodonkey 已提交
98 99 100 101 102
            self.loss_func = nn.MSELoss(**kargs)
        elif mode == "smooth_l1":
            self.loss_func = nn.SmoothL1Loss(**kargs)

    def forward(self, x, y):
littletomatodonkey's avatar
littletomatodonkey 已提交
103
        return self.loss_func(x, y)