algorithm_overview_en.md 5.1 KB
Newer Older
W
WenmuZhou 已提交
1 2 3
<a name="Algorithm_introduction"></a>
## Algorithm introduction

T
tink2123 已提交
4
This tutorial lists the text detection algorithms and text recognition algorithms supported by PaddleOCR, as well as the models and metrics of each algorithm on **English public datasets**. It is mainly used for algorithm introduction and algorithm performance comparison. For more models on other datasets including Chinese, please refer to [PP-OCR v2.0 models list](./models_list_en.md).
W
WenmuZhou 已提交
5 6 7 8 9 10 11 12 13


- [1. Text Detection Algorithm](#TEXTDETECTIONALGORITHM)
- [2. Text Recognition Algorithm](#TEXTRECOGNITIONALGORITHM)

<a name="TEXTDETECTIONALGORITHM"></a>
### 1. Text Detection Algorithm

PaddleOCR open source text detection algorithms list:
W
WenmuZhou 已提交
14 15 16 17
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
- [x]  SAST([paper](https://arxiv.org/abs/1908.05498))
- [x]  PSE([paper](https://arxiv.org/abs/1903.12473v2))
W
WenmuZhou 已提交
18 19 20 21

On the ICDAR2015 dataset, the text detection result is as follows:

|Model|Backbone|precision|recall|Hmean|Download link|
M
MissPenguin 已提交
22
| --- | --- | --- | --- | --- | --- |
M
MissPenguin 已提交
23 24
|EAST|ResNet50_vd|85.80%|86.71%|86.25%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
|EAST|MobileNetV3|79.42%|80.64%|80.03%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
M
MissPenguin 已提交
25 26
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
M
MissPenguin 已提交
27
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
W
WenmuZhou 已提交
28
|PSE|ResNet50_vd|85.81%|79.53%|82.55%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)|
W
WenmuZhou 已提交
29
|PSE|MobileNetV3|82.20%|70.48%|75.89%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar)|
W
WenmuZhou 已提交
30 31 32 33

On Total-Text dataset, the text detection result is as follows:

|Model|Backbone|precision|recall|Hmean|Download link|
M
MissPenguin 已提交
34
| --- | --- | --- | --- | --- | --- |
M
MissPenguin 已提交
35
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
W
WenmuZhou 已提交
36

37 38 39
**Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from:
* [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi).
* [Google Drive](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing)
W
WenmuZhou 已提交
40

M
MissPenguin 已提交
41
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./detection_en.md)
W
WenmuZhou 已提交
42 43 44 45 46

<a name="TEXTRECOGNITIONALGORITHM"></a>
### 2. Text Recognition Algorithm

PaddleOCR open-source text recognition algorithms list:
W
WenmuZhou 已提交
47 48 49 50 51
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [x]  SRN([paper](https://arxiv.org/abs/2003.12294))
W
WenmuZhou 已提交
52 53 54 55

Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:

|Model|Backbone|Avg Accuracy|Module combination|Download link|
W
WenmuZhou 已提交
56
|---|---|---|---|---|
M
MissPenguin 已提交
57 58 59 60
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
W
WenmuZhou 已提交
61 62
|StarNet|Resnet34_vd|84.44%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|StarNet|MobileNetV3|81.42%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
M
MissPenguin 已提交
63 64
|RARE|MobileNetV3|82.5%|rec_mv3_tps_bilstm_att |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)|
|RARE|Resnet34_vd|83.6%|rec_r34_vd_tps_bilstm_att |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)|
T
tink2123 已提交
65
|SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar)|
T
tink2123 已提交
66

M
MissPenguin 已提交
67
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./recognition_en.md)