Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleOCR
提交
b596e70f
P
PaddleOCR
项目概览
PaddlePaddle
/
PaddleOCR
大约 1 年 前同步成功
通知
1528
Star
32962
Fork
6643
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
108
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
108
Issue
108
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
b596e70f
编写于
12月 15, 2020
作者:
M
MissPenguin
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix db eval
上级
7936a998
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
15 addition
and
15 deletion
+15
-15
doc/doc_ch/algorithm_overview.md
doc/doc_ch/algorithm_overview.md
+6
-6
doc/doc_en/algorithm_overview_en.md
doc/doc_en/algorithm_overview_en.md
+6
-6
ppocr/postprocess/db_postprocess.py
ppocr/postprocess/db_postprocess.py
+1
-2
tools/infer/predict_det.py
tools/infer/predict_det.py
+2
-1
未找到文件。
doc/doc_ch/algorithm_overview.md
浏览文件 @
b596e70f
...
...
@@ -19,8 +19,8 @@ PaddleOCR开源的文本检测算法列表:
|-|-|-|-|-|-|
|EAST|ResNet50_vd|88.76%|81.36%|84.90%|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar
)
|
|EAST|MobileNetV3|78.24%|79.15%|78.69%|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar
)
|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/det_r50_vd_db_v2.0_train.tar
)
|
|DB|MobileNetV3|77.29%|73.08%|75.12%|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/det_mv3_db_v2.0_train.tar
)
|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/
en/
det_r50_vd_db_v2.0_train.tar
)
|
|DB|MobileNetV3|77.29%|73.08%|75.12%|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/
en/
det_mv3_db_v2.0_train.tar
)
|
|SAST|ResNet50_vd|91.83%|81.80%|86.52%|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar
)
)|
在Total-text文本检测公开数据集上,算法效果如下:
...
...
@@ -48,9 +48,9 @@ PaddleOCR基于动态图开源的文本识别算法列表:
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|-|-|-|-|-|
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/rec_r34_vd_none_none_ctc_v2.0_train.tar
)
|
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/rec_mv3_none_none_ctc_v2.0_train.tar
)
|
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar
)
|
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/rec_mv3_none_bilstm_ctc_v2.0_train.tar
)
|
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/
en/
rec_r34_vd_none_none_ctc_v2.0_train.tar
)
|
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/
en/
rec_mv3_none_none_ctc_v2.0_train.tar
)
|
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/
en/
rec_r34_vd_none_bilstm_ctc_v2.0_train.tar
)
|
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|
[
下载链接
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/
en/
rec_mv3_none_bilstm_ctc_v2.0_train.tar
)
|
PaddleOCR文本识别算法的训练和使用请参考文档教程中
[
模型训练/评估中的文本识别部分
](
./recognition.md
)
。
doc/doc_en/algorithm_overview_en.md
浏览文件 @
b596e70f
...
...
@@ -21,8 +21,8 @@ On the ICDAR2015 dataset, the text detection result is as follows:
|-|-|-|-|-|-|
|EAST|ResNet50_vd|88.76%|81.36%|84.90%|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar
)
|
|EAST|MobileNetV3|78.24%|79.15%|78.69%|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar
)
|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/det_r50_vd_db_v2.0_train.tar
)
|
|DB|MobileNetV3|77.29%|73.08%|75.12%|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/det_mv3_db_v2.0_train.tar
)
|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/
en/
det_r50_vd_db_v2.0_train.tar
)
|
|DB|MobileNetV3|77.29%|73.08%|75.12%|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/
en/
det_mv3_db_v2.0_train.tar
)
|
|SAST|ResNet50_vd|91.83%|81.80%|86.52%|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar
)
)|
On Total-Text dataset, the text detection result is as follows:
...
...
@@ -49,9 +49,9 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|Model|Backbone|Avg Accuracy|Module combination|Download link|
|-|-|-|-|-|
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/rec_r34_vd_none_none_ctc_v2.0_train.tar
)
|
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/rec_mv3_none_none_ctc_v2.0_train.tar
)
|
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar
)
|
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/rec_mv3_none_bilstm_ctc_v2.0_train.tar
)
|
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/
en/
rec_r34_vd_none_none_ctc_v2.0_train.tar
)
|
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/
en/
rec_mv3_none_none_ctc_v2.0_train.tar
)
|
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/
en/
rec_r34_vd_none_bilstm_ctc_v2.0_train.tar
)
|
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|
[
Download link
](
https://paddleocr.bj.bcebos.com/dygraph_v2.0/
en/
rec_mv3_none_bilstm_ctc_v2.0_train.tar
)
|
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms
[
Text recognition model training/evaluation/prediction
](
./doc/doc_en/recognition_en.md
)
ppocr/postprocess/db_postprocess.py
浏览文件 @
b596e70f
...
...
@@ -132,8 +132,7 @@ class DBPostProcess(object):
cv2
.
fillPoly
(
mask
,
box
.
reshape
(
1
,
-
1
,
2
).
astype
(
np
.
int32
),
1
)
return
cv2
.
mean
(
bitmap
[
ymin
:
ymax
+
1
,
xmin
:
xmax
+
1
],
mask
)[
0
]
def
__call__
(
self
,
outs_dict
,
shape_list
):
pred
=
outs_dict
[
'maps'
]
def
__call__
(
self
,
pred
,
shape_list
):
if
isinstance
(
pred
,
paddle
.
Tensor
):
pred
=
pred
.
numpy
()
pred
=
pred
[:,
0
,
:,
:]
...
...
tools/infer/predict_det.py
浏览文件 @
b596e70f
...
...
@@ -178,7 +178,8 @@ class TextDetector(object):
preds
[
'f_tco'
]
=
outputs
[
2
]
preds
[
'f_tvo'
]
=
outputs
[
3
]
else
:
preds
[
'maps'
]
=
outputs
[
0
]
# preds['maps'] = outputs[0]
preds
=
outputs
[
0
]
post_result
=
self
.
postprocess_op
(
preds
,
shape_list
)
dt_boxes
=
post_result
[
0
][
'points'
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录