img_tools.py 14.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import math
import cv2
import numpy as np
T
tink2123 已提交
18
import random
L
LDOUBLEV 已提交
19 20
from ppocr.utils.utility import initial_logger
logger = initial_logger()
L
LDOUBLEV 已提交
21

littletomatodonkey's avatar
littletomatodonkey 已提交
22 23
from .text_image_aug.augment import tia_distort, tia_stretch, tia_perspective

L
LDOUBLEV 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

def get_bounding_box_rect(pos):
    left = min(pos[0])
    right = max(pos[0])
    top = min(pos[1])
    bottom = max(pos[1])
    return [left, top, right, bottom]


def resize_norm_img(img, image_shape):
    imgC, imgH, imgW = image_shape
    h = img.shape[0]
    w = img.shape[1]
    ratio = w / float(h)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


T
tink2123 已提交
56 57 58
def resize_norm_img_chinese(img, image_shape):
    imgC, imgH, imgW = image_shape
    # todo: change to 0 and modified image shape
T
tink2123 已提交
59
    max_wh_ratio = imgW * 1.0 / imgH
T
tink2123 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    h, w = img.shape[0], img.shape[1]
    ratio = w * 1.0 / h
    max_wh_ratio = max(max_wh_ratio, ratio)
    imgW = int(32 * max_wh_ratio)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


L
LDOUBLEV 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94
def get_img_data(value):
    """get_img_data"""
    if not value:
        return None
    imgdata = np.frombuffer(value, dtype='uint8')
    if imgdata is None:
        return None
    imgori = cv2.imdecode(imgdata, 1)
    if imgori is None:
        return None
    return imgori


T
tink2123 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def flag():
    """
    flag
    """
    return 1 if random.random() > 0.5000001 else -1


def cvtColor(img):
    """
    cvtColor
    """
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    delta = 0.001 * random.random() * flag()
    hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
    new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    return new_img


def blur(img):
    """
    blur
    """
    h, w, _ = img.shape
    if h > 10 and w > 10:
        return cv2.GaussianBlur(img, (5, 5), 1)
    else:
        return img


T
tink2123 已提交
124
def jitter(img):
T
tink2123 已提交
125
    """
T
tink2123 已提交
126
    jitter
T
tink2123 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140
    """
    w, h, _ = img.shape
    if h > 10 and w > 10:
        thres = min(w, h)
        s = int(random.random() * thres * 0.01)
        src_img = img.copy()
        for i in range(s):
            img[i:, i:, :] = src_img[:w - i, :h - i, :]
        return img
    else:
        return img


def add_gasuss_noise(image, mean=0, var=0.1):
141 142 143
    """
    Gasuss noise
    """
T
tink2123 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

    noise = np.random.normal(mean, var**0.5, image.shape)
    out = image + 0.5 * noise
    out = np.clip(out, 0, 255)
    out = np.uint8(out)
    return out


def get_crop(image):
    """
    random crop
    """
    h, w, _ = image.shape
    top_min = 1
    top_max = 8
    top_crop = int(random.randint(top_min, top_max))
160
    top_crop = min(top_crop, h - 1)
T
tink2123 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    crop_img = image.copy()
    ratio = random.randint(0, 1)
    if ratio:
        crop_img = crop_img[top_crop:h, :, :]
    else:
        crop_img = crop_img[0:h - top_crop, :, :]
    return crop_img


class Config:
    """
    Config
    """

    def __init__(self, ):
        self.anglex = random.random() * 30
        self.angley = random.random() * 15
        self.anglez = random.random() * 10
        self.fov = 42
        self.r = 0
        self.shearx = random.random() * 0.3
        self.sheary = random.random() * 0.05
        self.borderMode = cv2.BORDER_REPLICATE

    def make(self, w, h, ang):
        """
        make
        """
        self.anglex = random.random() * 5 * flag()
        self.angley = random.random() * 5 * flag()
        self.anglez = -1 * random.random() * int(ang) * flag()
        self.fov = 42
        self.r = 0
        self.shearx = 0
        self.sheary = 0
        self.borderMode = cv2.BORDER_REPLICATE
        self.w = w
        self.h = h

        self.perspective = True
littletomatodonkey's avatar
littletomatodonkey 已提交
201 202 203
        self.stretch = True
        self.distort = True

T
tink2123 已提交
204 205 206 207
        self.crop = True
        self.affine = False
        self.reverse = True
        self.noise = True
T
tink2123 已提交
208
        self.jitter = True
T
tink2123 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        self.blur = True
        self.color = True


def rad(x):
    """
    rad
    """
    return x * np.pi / 180


def get_warpR(config):
    """
    get_warpR
    """
    anglex, angley, anglez, fov, w, h, r = \
        config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
    if w > 69 and w < 112:
        anglex = anglex * 1.5

    z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
    # Homogeneous coordinate transformation matrix
    rx = np.array([[1, 0, 0, 0],
                   [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
                       0,
                       -np.sin(rad(anglex)),
                       np.cos(rad(anglex)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
                   [0, 1, 0, 0], [
                       -np.sin(rad(angley)),
                       0,
                       np.cos(rad(angley)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
                   [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
    r = rx.dot(ry).dot(rz)
    # generate 4 points
    pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
    p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
    p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
    p3 = np.array([0, h, 0, 0], np.float32) - pcenter
    p4 = np.array([w, h, 0, 0], np.float32) - pcenter
    dst1 = r.dot(p1)
    dst2 = r.dot(p2)
    dst3 = r.dot(p3)
    dst4 = r.dot(p4)
259
    list_dst = np.array([dst1, dst2, dst3, dst4])
T
tink2123 已提交
260 261 262
    org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
    dst = np.zeros((4, 2), np.float32)
    # Project onto the image plane
263 264 265
    dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
    dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]

T
tink2123 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    warpR = cv2.getPerspectiveTransform(org, dst)

    dst1, dst2, dst3, dst4 = dst
    r1 = int(min(dst1[1], dst2[1]))
    r2 = int(max(dst3[1], dst4[1]))
    c1 = int(min(dst1[0], dst3[0]))
    c2 = int(max(dst2[0], dst4[0]))

    try:
        ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))

        dx = -c1
        dy = -r1
        T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
        ret = T1.dot(warpR)
    except:
        ratio = 1.0
        T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
        ret = T1
    return ret, (-r1, -c1), ratio, dst


def get_warpAffine(config):
    """
    get_warpAffine
    """
    anglez = config.anglez
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
    return rz


def warp(img, ang):
    """
    warp
    """
    h, w, _ = img.shape
    config = Config()
    config.make(w, h, ang)
    new_img = img

littletomatodonkey's avatar
littletomatodonkey 已提交
307 308 309 310 311
    prob = 0.4

    if config.distort:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
littletomatodonkey's avatar
littletomatodonkey 已提交
312 313 314 315 316
            try:
                new_img = tia_distort(new_img, random.randint(3, 6))
            except:
                logger.warning(
                    "Exception occured during tia_distort, pass it...")
littletomatodonkey's avatar
littletomatodonkey 已提交
317 318 319 320

    if config.stretch:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
littletomatodonkey's avatar
littletomatodonkey 已提交
321 322 323 324 325
            try:
                new_img = tia_stretch(new_img, random.randint(3, 6))
            except:
                logger.warning(
                    "Exception occured during tia_stretch, pass it...")
littletomatodonkey's avatar
littletomatodonkey 已提交
326

T
tink2123 已提交
327
    if config.perspective:
littletomatodonkey's avatar
littletomatodonkey 已提交
328
        if random.random() <= prob:
littletomatodonkey's avatar
littletomatodonkey 已提交
329 330 331 332 333
            try:
                new_img = tia_perspective(new_img)
            except:
                logger.warning(
                    "Exception occured during tia_perspective, pass it...")
littletomatodonkey's avatar
littletomatodonkey 已提交
334

T
tink2123 已提交
335 336
    if config.crop:
        img_height, img_width = img.shape[0:2]
littletomatodonkey's avatar
littletomatodonkey 已提交
337
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
T
tink2123 已提交
338
            new_img = get_crop(new_img)
littletomatodonkey's avatar
littletomatodonkey 已提交
339

T
tink2123 已提交
340
    if config.blur:
littletomatodonkey's avatar
littletomatodonkey 已提交
341
        if random.random() <= prob:
T
tink2123 已提交
342 343
            new_img = blur(new_img)
    if config.color:
littletomatodonkey's avatar
littletomatodonkey 已提交
344
        if random.random() <= prob:
T
tink2123 已提交
345
            new_img = cvtColor(new_img)
T
tink2123 已提交
346 347
    if config.jitter:
        new_img = jitter(new_img)
T
tink2123 已提交
348
    if config.noise:
littletomatodonkey's avatar
littletomatodonkey 已提交
349
        if random.random() <= prob:
T
tink2123 已提交
350 351
            new_img = add_gasuss_noise(new_img)
    if config.reverse:
littletomatodonkey's avatar
littletomatodonkey 已提交
352
        if random.random() <= prob:
T
tink2123 已提交
353 354 355 356
            new_img = 255 - new_img
    return new_img


L
LDOUBLEV 已提交
357 358 359 360 361
def process_image(img,
                  image_shape,
                  label=None,
                  char_ops=None,
                  loss_type=None,
T
tink2123 已提交
362
                  max_text_length=None,
T
tink2123 已提交
363
                  tps=None,
T
tink2123 已提交
364 365 366 367
                  infer_mode=False,
                  distort=False):
    if distort:
        img = warp(img, 10)
T
tink2123 已提交
368
    if infer_mode and char_ops.character_type == "ch" and not tps:
T
tink2123 已提交
369
        norm_img = resize_norm_img_chinese(img, image_shape)
T
tink2123 已提交
370 371 372
    else:
        norm_img = resize_norm_img(img, image_shape)

L
LDOUBLEV 已提交
373 374
    norm_img = norm_img[np.newaxis, :]
    if label is not None:
L
LDOUBLEV 已提交
375
        # char_num = char_ops.get_char_num()
L
LDOUBLEV 已提交
376 377
        text = char_ops.encode(label)
        if len(text) == 0 or len(text) > max_text_length:
378
            logger.info(
littletomatodonkey's avatar
littletomatodonkey 已提交
379
                "Warning in ppocr/data/rec/img_tools.py: Wrong data type."
380 381 382
                "Excepted string with length between 1 and {}, but "
                "got '{}'. Label is '{}'".format(max_text_length,
                                                 len(text), label))
L
LDOUBLEV 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
            return None
        else:
            if loss_type == "ctc":
                text = text.reshape(-1, 1)
                return (norm_img, text)
            elif loss_type == "attention":
                beg_flag_idx = char_ops.get_beg_end_flag_idx("beg")
                end_flag_idx = char_ops.get_beg_end_flag_idx("end")
                beg_text = np.append(beg_flag_idx, text)
                end_text = np.append(text, end_flag_idx)
                beg_text = beg_text.reshape(-1, 1)
                end_text = end_text.reshape(-1, 1)
                return (norm_img, beg_text, end_text)
            else:
                assert False, "Unsupport loss_type %s in process_image"\
                    % loss_type
    return (norm_img)
T
tink2123 已提交
400

littletomatodonkey's avatar
littletomatodonkey 已提交
401

T
tink2123 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
def resize_norm_img_srn(img, image_shape):
    imgC, imgH, imgW = image_shape

    img_black = np.zeros((imgH, imgW))
    im_hei = img.shape[0]
    im_wid = img.shape[1]

    if im_wid <= im_hei * 1:
        img_new = cv2.resize(img, (imgH * 1, imgH))
    elif im_wid <= im_hei * 2:
        img_new = cv2.resize(img, (imgH * 2, imgH))
    elif im_wid <= im_hei * 3:
        img_new = cv2.resize(img, (imgH * 3, imgH))
    else:
        img_new = cv2.resize(img, (imgW, imgH))

    img_np = np.asarray(img_new)
    img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
    img_black[:, 0:img_np.shape[1]] = img_np
    img_black = img_black[:, :, np.newaxis]

    row, col, c = img_black.shape
    c = 1

    return np.reshape(img_black, (c, row, col)).astype(np.float32)

littletomatodonkey's avatar
littletomatodonkey 已提交
428 429

def srn_other_inputs(image_shape, num_heads, max_text_length, char_num):
T
tink2123 已提交
430 431 432 433

    imgC, imgH, imgW = image_shape
    feature_dim = int((imgH / 8) * (imgW / 8))

littletomatodonkey's avatar
littletomatodonkey 已提交
434 435 436 437
    encoder_word_pos = np.array(range(0, feature_dim)).reshape(
        (feature_dim, 1)).astype('int64')
    gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
        (max_text_length, 1)).astype('int64')
T
tink2123 已提交
438

littletomatodonkey's avatar
littletomatodonkey 已提交
439 440
    lbl_weight = np.array([int(char_num - 1)] * max_text_length).reshape(
        (-1, 1)).astype('int64')
T
tink2123 已提交
441

littletomatodonkey's avatar
littletomatodonkey 已提交
442 443 444 445 446
    gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
    gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
        [-1, 1, max_text_length, max_text_length])
    gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
                                  [1, num_heads, 1, 1]) * [-1e9]
T
tink2123 已提交
447

littletomatodonkey's avatar
littletomatodonkey 已提交
448 449 450 451
    gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
        [-1, 1, max_text_length, max_text_length])
    gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
                                  [1, num_heads, 1, 1]) * [-1e9]
T
tink2123 已提交
452 453 454 455

    encoder_word_pos = encoder_word_pos[np.newaxis, :]
    gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

littletomatodonkey's avatar
littletomatodonkey 已提交
456 457 458 459 460
    return [
        lbl_weight, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
        gsrm_slf_attn_bias2
    ]

T
tink2123 已提交
461 462 463 464 465 466 467 468 469 470

def process_image_srn(img,
                      image_shape,
                      num_heads,
                      max_text_length,
                      label=None,
                      char_ops=None,
                      loss_type=None):
    norm_img = resize_norm_img_srn(img, image_shape)
    norm_img = norm_img[np.newaxis, :]
T
tink2123 已提交
471 472
    char_num = char_ops.get_char_num()

T
tink2123 已提交
473
    [lbl_weight, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
T
tink2123 已提交
474
        srn_other_inputs(image_shape, num_heads, max_text_length,char_num)
T
tink2123 已提交
475 476 477 478 479 480 481

    if label is not None:
        text = char_ops.encode(label)
        if len(text) == 0 or len(text) > max_text_length:
            return None
        else:
            if loss_type == "srn":
littletomatodonkey's avatar
littletomatodonkey 已提交
482
                text_padded = [int(char_num - 1)] * max_text_length
T
tink2123 已提交
483 484 485 486 487
                for i in range(len(text)):
                    text_padded[i] = text[i]
                    lbl_weight[i] = [1.0]
                text_padded = np.array(text_padded)
                text = text_padded.reshape(-1, 1)
littletomatodonkey's avatar
littletomatodonkey 已提交
488 489
                return (norm_img, text, encoder_word_pos, gsrm_word_pos,
                        gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight)
T
tink2123 已提交
490 491 492
            else:
                assert False, "Unsupport loss_type %s in process_image"\
                    % loss_type
littletomatodonkey's avatar
littletomatodonkey 已提交
493 494
    return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2)