img_tools.py 4.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import math
import cv2
import numpy as np
L
LDOUBLEV 已提交
18 19
from ppocr.utils.utility import initial_logger
logger = initial_logger()
L
LDOUBLEV 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52


def get_bounding_box_rect(pos):
    left = min(pos[0])
    right = max(pos[0])
    top = min(pos[1])
    bottom = max(pos[1])
    return [left, top, right, bottom]


def resize_norm_img(img, image_shape):
    imgC, imgH, imgW = image_shape
    h = img.shape[0]
    w = img.shape[1]
    ratio = w / float(h)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


T
tink2123 已提交
53 54 55
def resize_norm_img_chinese(img, image_shape):
    imgC, imgH, imgW = image_shape
    # todo: change to 0 and modified image shape
T
tink2123 已提交
56
    max_wh_ratio = 0
T
tink2123 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    h, w = img.shape[0], img.shape[1]
    ratio = w * 1.0 / h
    max_wh_ratio = max(max_wh_ratio, ratio)
    imgW = int(32 * max_wh_ratio)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


L
LDOUBLEV 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
def get_img_data(value):
    """get_img_data"""
    if not value:
        return None
    imgdata = np.frombuffer(value, dtype='uint8')
    if imgdata is None:
        return None
    imgori = cv2.imdecode(imgdata, 1)
    if imgori is None:
        return None
    return imgori


def process_image(img,
                  image_shape,
                  label=None,
                  char_ops=None,
                  loss_type=None,
T
tink2123 已提交
97
                  max_text_length=None,
T
tink2123 已提交
98 99
                  tps=None,
                  infer_mode=False):
T
tink2123 已提交
100
    if infer_mode and char_ops.character_type == "ch" and not tps:
T
tink2123 已提交
101
        norm_img = resize_norm_img_chinese(img, image_shape)
T
tink2123 已提交
102 103 104
    else:
        norm_img = resize_norm_img(img, image_shape)

L
LDOUBLEV 已提交
105 106
    norm_img = norm_img[np.newaxis, :]
    if label is not None:
L
LDOUBLEV 已提交
107
        # char_num = char_ops.get_char_num()
L
LDOUBLEV 已提交
108 109
        text = char_ops.encode(label)
        if len(text) == 0 or len(text) > max_text_length:
L
LDOUBLEV 已提交
110 111
            logger.info(
                "Warning in ppocr/data/rec/img_tools.py:line106: Wrong data type."
T
tink2123 已提交
112
                "Excepted string with length between 1 and {}, but "
T
tink2123 已提交
113 114
                "got '{}'. Label is '{}'".format(max_text_length,
                                                 len(text), label))
L
LDOUBLEV 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
            return None
        else:
            if loss_type == "ctc":
                text = text.reshape(-1, 1)
                return (norm_img, text)
            elif loss_type == "attention":
                beg_flag_idx = char_ops.get_beg_end_flag_idx("beg")
                end_flag_idx = char_ops.get_beg_end_flag_idx("end")
                beg_text = np.append(beg_flag_idx, text)
                end_text = np.append(text, end_flag_idx)
                beg_text = beg_text.reshape(-1, 1)
                end_text = end_text.reshape(-1, 1)
                return (norm_img, beg_text, end_text)
            else:
                assert False, "Unsupport loss_type %s in process_image"\
                    % loss_type
    return (norm_img)