infer.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif

void InitAndInfer(const std::string &det_model_dir,
                  const std::string &cls_model_dir,
                  const std::string &rec_model_dir,
                  const std::string &rec_label_file,
                  const std::string &image_file,
                  const fastdeploy::RuntimeOption &option) {
  auto det_model_file = det_model_dir + sep + "inference.pdmodel";
  auto det_params_file = det_model_dir + sep + "inference.pdiparams";

  auto cls_model_file = cls_model_dir + sep + "inference.pdmodel";
  auto cls_params_file = cls_model_dir + sep + "inference.pdiparams";

  auto rec_model_file = rec_model_dir + sep + "inference.pdmodel";
  auto rec_params_file = rec_model_dir + sep + "inference.pdiparams";

  auto det_option = option;
  auto cls_option = option;
  auto rec_option = option;

  // The cls and rec model can inference a batch of images now.
  // User could initialize the inference batch size and set them after create
  // PP-OCR model.
  int cls_batch_size = 1;
  int rec_batch_size = 6;

  // If use TRT backend, the dynamic shape will be set as follow.
  // We recommend that users set the length and height of the detection model to
  // a multiple of 32.
  // We also recommend that users set the Trt input shape as follow.
  det_option.SetTrtInputShape("x", {1, 3, 64, 64}, {1, 3, 640, 640},
                              {1, 3, 960, 960});
  cls_option.SetTrtInputShape("x", {1, 3, 48, 10}, {cls_batch_size, 3, 48, 320},
                              {cls_batch_size, 3, 48, 1024});
  rec_option.SetTrtInputShape("x", {1, 3, 48, 10}, {rec_batch_size, 3, 48, 320},
                              {rec_batch_size, 3, 48, 2304});

  // Users could save TRT cache file to disk as follow.
  // det_option.SetTrtCacheFile(det_model_dir + sep + "det_trt_cache.trt");
  // cls_option.SetTrtCacheFile(cls_model_dir + sep + "cls_trt_cache.trt");
  // rec_option.SetTrtCacheFile(rec_model_dir + sep + "rec_trt_cache.trt");

  auto det_model = fastdeploy::vision::ocr::DBDetector(
      det_model_file, det_params_file, det_option);
  auto cls_model = fastdeploy::vision::ocr::Classifier(
      cls_model_file, cls_params_file, cls_option);
  auto rec_model = fastdeploy::vision::ocr::Recognizer(
      rec_model_file, rec_params_file, rec_label_file, rec_option);

  assert(det_model.Initialized());
  assert(cls_model.Initialized());
  assert(rec_model.Initialized());

  // Parameters settings for pre and post processing of Det/Cls/Rec Models.
  // All parameters are set to default values.
  det_model.GetPreprocessor().SetMaxSideLen(960);
  det_model.GetPostprocessor().SetDetDBThresh(0.3);
  det_model.GetPostprocessor().SetDetDBBoxThresh(0.6);
  det_model.GetPostprocessor().SetDetDBUnclipRatio(1.5);
  det_model.GetPostprocessor().SetDetDBScoreMode("slow");
  det_model.GetPostprocessor().SetUseDilation(0);
  cls_model.GetPostprocessor().SetClsThresh(0.9);

  // The classification model is optional, so the PP-OCR can also be connected
  // in series as follows
  // auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model);
  auto ppocr_v3 =
      fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);

  // Set inference batch size for cls model and rec model, the value could be -1
  // and 1 to positive infinity.
  // When inference batch size is set to -1, it means that the inference batch
  // size
  // of the cls and rec models will be the same as the number of boxes detected
  // by the det model.
  ppocr_v3.SetClsBatchSize(cls_batch_size);
  ppocr_v3.SetRecBatchSize(rec_batch_size);

  if (!ppocr_v3.Initialized()) {
    std::cerr << "Failed to initialize PP-OCR." << std::endl;
    return;
  }

  auto im = cv::imread(image_file);
  auto im_bak = im.clone();

  fastdeploy::vision::OCRResult result;
  if (!ppocr_v3.Predict(&im, &result)) {
    std::cerr << "Failed to predict." << std::endl;
    return;
  }

  std::cout << result.Str() << std::endl;

  auto vis_im = fastdeploy::vision::VisOcr(im_bak, result);
  cv::imwrite("vis_result.jpg", vis_im);
  std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

int main(int argc, char *argv[]) {
  if (argc < 7) {
    std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model "
                 "path/to/rec_model path/to/rec_label_file path/to/image "
                 "run_option, "
                 "e.g ./infer_demo ./ch_PP-OCRv3_det_infer "
                 "./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer "
                 "./ppocr_keys_v1.txt ./12.jpg 0"
              << std::endl;
    std::cout << "The data type of run_option is int, e.g. 0: run with paddle "
                 "inference on cpu;"
              << std::endl;
    return -1;
  }

  fastdeploy::RuntimeOption option;
  int flag = std::atoi(argv[6]);

  if (flag == 0) {
    option.UseCpu();
    option.UsePaddleBackend(); // Paddle Inference
  } else if (flag == 1) {
    option.UseCpu();
    option.UseOpenVINOBackend(); // OpenVINO
  } else if (flag == 2) {
    option.UseCpu();
    option.UseOrtBackend(); // ONNX Runtime
  } else if (flag == 3) {
    option.UseCpu();
    option.UseLiteBackend(); // Paddle Lite
  } else if (flag == 4) {
    option.UseGpu();
    option.UsePaddleBackend(); // Paddle Inference
  } else if (flag == 5) {
    option.UseGpu();
    option.UseTrtBackend();
    option.EnablePaddleTrtCollectShape();
    option.EnablePaddleToTrt(); // Paddle-TensorRT
  } else if (flag == 6) {
    option.UseGpu();
    option.UseOrtBackend(); // ONNX Runtime
  } else if (flag == 7) {
    option.UseGpu();
    option.UseTrtBackend(); // TensorRT
  }

  std::string det_model_dir = argv[1];
  std::string cls_model_dir = argv[2];
  std::string rec_model_dir = argv[3];
  std::string rec_label_file = argv[4];
  std::string test_image = argv[5];
  InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file,
               test_image, option);
  return 0;
}