// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision.h" #ifdef WIN32 const char sep = '\\'; #else const char sep = '/'; #endif void InitAndInfer(const std::string &det_model_dir, const std::string &cls_model_dir, const std::string &rec_model_dir, const std::string &rec_label_file, const std::string &image_file, const fastdeploy::RuntimeOption &option) { auto det_model_file = det_model_dir + sep + "inference.pdmodel"; auto det_params_file = det_model_dir + sep + "inference.pdiparams"; auto cls_model_file = cls_model_dir + sep + "inference.pdmodel"; auto cls_params_file = cls_model_dir + sep + "inference.pdiparams"; auto rec_model_file = rec_model_dir + sep + "inference.pdmodel"; auto rec_params_file = rec_model_dir + sep + "inference.pdiparams"; auto det_option = option; auto cls_option = option; auto rec_option = option; // The cls and rec model can inference a batch of images now. // User could initialize the inference batch size and set them after create // PP-OCR model. int cls_batch_size = 1; int rec_batch_size = 6; // If use TRT backend, the dynamic shape will be set as follow. // We recommend that users set the length and height of the detection model to // a multiple of 32. // We also recommend that users set the Trt input shape as follow. det_option.SetTrtInputShape("x", {1, 3, 64, 64}, {1, 3, 640, 640}, {1, 3, 960, 960}); cls_option.SetTrtInputShape("x", {1, 3, 48, 10}, {cls_batch_size, 3, 48, 320}, {cls_batch_size, 3, 48, 1024}); rec_option.SetTrtInputShape("x", {1, 3, 48, 10}, {rec_batch_size, 3, 48, 320}, {rec_batch_size, 3, 48, 2304}); // Users could save TRT cache file to disk as follow. // det_option.SetTrtCacheFile(det_model_dir + sep + "det_trt_cache.trt"); // cls_option.SetTrtCacheFile(cls_model_dir + sep + "cls_trt_cache.trt"); // rec_option.SetTrtCacheFile(rec_model_dir + sep + "rec_trt_cache.trt"); auto det_model = fastdeploy::vision::ocr::DBDetector( det_model_file, det_params_file, det_option); auto cls_model = fastdeploy::vision::ocr::Classifier( cls_model_file, cls_params_file, cls_option); auto rec_model = fastdeploy::vision::ocr::Recognizer( rec_model_file, rec_params_file, rec_label_file, rec_option); assert(det_model.Initialized()); assert(cls_model.Initialized()); assert(rec_model.Initialized()); // Parameters settings for pre and post processing of Det/Cls/Rec Models. // All parameters are set to default values. det_model.GetPreprocessor().SetMaxSideLen(960); det_model.GetPostprocessor().SetDetDBThresh(0.3); det_model.GetPostprocessor().SetDetDBBoxThresh(0.6); det_model.GetPostprocessor().SetDetDBUnclipRatio(1.5); det_model.GetPostprocessor().SetDetDBScoreMode("slow"); det_model.GetPostprocessor().SetUseDilation(0); cls_model.GetPostprocessor().SetClsThresh(0.9); // The classification model is optional, so the PP-OCR can also be connected // in series as follows // auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model); auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model); // Set inference batch size for cls model and rec model, the value could be -1 // and 1 to positive infinity. // When inference batch size is set to -1, it means that the inference batch // size // of the cls and rec models will be the same as the number of boxes detected // by the det model. ppocr_v3.SetClsBatchSize(cls_batch_size); ppocr_v3.SetRecBatchSize(rec_batch_size); if (!ppocr_v3.Initialized()) { std::cerr << "Failed to initialize PP-OCR." << std::endl; return; } auto im = cv::imread(image_file); auto im_bak = im.clone(); fastdeploy::vision::OCRResult result; if (!ppocr_v3.Predict(&im, &result)) { std::cerr << "Failed to predict." << std::endl; return; } std::cout << result.Str() << std::endl; auto vis_im = fastdeploy::vision::VisOcr(im_bak, result); cv::imwrite("vis_result.jpg", vis_im); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; } int main(int argc, char *argv[]) { if (argc < 7) { std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model " "path/to/rec_model path/to/rec_label_file path/to/image " "run_option, " "e.g ./infer_demo ./ch_PP-OCRv3_det_infer " "./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer " "./ppocr_keys_v1.txt ./12.jpg 0" << std::endl; std::cout << "The data type of run_option is int, e.g. 0: run with paddle " "inference on cpu;" << std::endl; return -1; } fastdeploy::RuntimeOption option; int flag = std::atoi(argv[6]); if (flag == 0) { option.UseCpu(); option.UsePaddleBackend(); // Paddle Inference } else if (flag == 1) { option.UseCpu(); option.UseOpenVINOBackend(); // OpenVINO } else if (flag == 2) { option.UseCpu(); option.UseOrtBackend(); // ONNX Runtime } else if (flag == 3) { option.UseCpu(); option.UseLiteBackend(); // Paddle Lite } else if (flag == 4) { option.UseGpu(); option.UsePaddleBackend(); // Paddle Inference } else if (flag == 5) { option.UseGpu(); option.UseTrtBackend(); option.EnablePaddleTrtCollectShape(); option.EnablePaddleToTrt(); // Paddle-TensorRT } else if (flag == 6) { option.UseGpu(); option.UseOrtBackend(); // ONNX Runtime } else if (flag == 7) { option.UseGpu(); option.UseTrtBackend(); // TensorRT } std::string det_model_dir = argv[1]; std::string cls_model_dir = argv[2]; std::string rec_model_dir = argv[3]; std::string rec_label_file = argv[4]; std::string test_image = argv[5]; InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file, test_image, option); return 0; }