algorithm_overview.md 5.3 KB
Newer Older
W
WenmuZhou 已提交
1 2
<a name="算法介绍"></a>
## 算法介绍
M
MissPenguin 已提交
3
本文给出了PaddleOCR已支持的文本检测算法和文本识别算法列表,以及每个算法在**英文公开数据集**上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考[PP-OCR v2.0 系列模型下载](./models_list.md)
W
WenmuZhou 已提交
4 5 6 7 8 9 10 11

- [1.文本检测算法](#文本检测算法)
- [2.文本识别算法](#文本识别算法)

<a name="文本检测算法"></a>
### 1.文本检测算法

PaddleOCR开源的文本检测算法列表:
W
WenmuZhou 已提交
12 13 14 15
- [x]  DB([paper]( https://arxiv.org/abs/1911.08947))(ppocr推荐)
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
- [x]  SAST([paper](https://arxiv.org/abs/1908.05498))
- [x]  PSENet([paper](https://arxiv.org/abs/1903.12473v2)
W
WenmuZhou 已提交
16 17

在ICDAR2015文本检测公开数据集上,算法效果如下:
W
WenmuZhou 已提交
18

W
WenmuZhou 已提交
19
|模型|骨干网络|precision|recall|Hmean|下载链接|
M
MissPenguin 已提交
20
| --- | --- | --- | --- | --- | --- |
M
MissPenguin 已提交
21 22
|EAST|ResNet50_vd|85.80%|86.71%|86.25%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
|EAST|MobileNetV3|79.42%|80.64%|80.03%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
M
MissPenguin 已提交
23 24
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
M
MissPenguin 已提交
25
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
W
WenmuZhou 已提交
26
|PSE|ResNet50_vd|85.81%|79.53%|82.55%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)|
W
WenmuZhou 已提交
27
|PSE|MobileNetV3|82.20%|70.48%|75.89%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar)|
W
WenmuZhou 已提交
28 29 30 31

在Total-text文本检测公开数据集上,算法效果如下:

|模型|骨干网络|precision|recall|Hmean|下载链接|
M
MissPenguin 已提交
32
| --- | --- | --- | --- | --- | --- |
M
MissPenguin 已提交
33
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
W
WenmuZhou 已提交
34

35 36 37
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:
* [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
* [Google Drive下载地址](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing)
W
WenmuZhou 已提交
38 39 40 41 42 43 44

PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./detection.md)


<a name="文本识别算法"></a>
### 2.文本识别算法

T
tink2123 已提交
45
PaddleOCR基于动态图开源的文本识别算法列表:
W
WenmuZhou 已提交
46 47 48 49 50
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))(ppocr推荐)
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [x]  SRN([paper](https://arxiv.org/abs/2003.12294))
T
Topdu 已提交
51
- [x]  NRTR([paper](https://arxiv.org/abs/1806.00926v2))
A
andyjpaddle 已提交
52
- [x]  SAR([paper](https://arxiv.org/abs/1811.00751v2))
W
WenmuZhou 已提交
53

W
WenmuZhou 已提交
54
参考[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
W
WenmuZhou 已提交
55 56

|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
W
WenmuZhou 已提交
57
|---|---|---|---|---|
M
MissPenguin 已提交
58 59 60 61
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
W
WenmuZhou 已提交
62 63
|StarNet|Resnet34_vd|84.44%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|StarNet|MobileNetV3|81.42%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
M
MissPenguin 已提交
64 65
|RARE|MobileNetV3|82.5%|rec_mv3_tps_bilstm_att |[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)|
|RARE|Resnet34_vd|83.6%|rec_r34_vd_tps_bilstm_att |[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)|
T
tink2123 已提交
66
|SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) |
T
Topdu 已提交
67
|NRTR|NRTR_MTB| 84.3% | rec_mtb_nrtr | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) |
A
andyjpaddle 已提交
68
|SAR|Resnet31| 87.2% | rec_r31_sar | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) |
L
LDOUBLEV 已提交
69

W
WenmuZhou 已提交
70
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)