predict_det.py 14.0 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
W
WenmuZhou 已提交
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey 已提交
19
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

23 24 25 26 27
import cv2
import numpy as np
import time
import sys

L
LDOUBLEV 已提交
28
import tools.infer.utility as utility
W
WenmuZhou 已提交
29
from ppocr.utils.logging import get_logger
30
from ppocr.utils.utility import get_image_file_list, check_and_read
W
WenmuZhou 已提交
31 32
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
L
LDOUBLEV 已提交
33
import json
W
WenmuZhou 已提交
34 35
logger = get_logger()

L
LDOUBLEV 已提交
36 37 38

class TextDetector(object):
    def __init__(self, args):
L
LDOUBLEV 已提交
39
        self.args = args
L
LDOUBLEV 已提交
40
        self.det_algorithm = args.det_algorithm
T
tink2123 已提交
41
        self.use_onnx = args.use_onnx
M
MissPenguin 已提交
42
        pre_process_list = [{
43 44
            'DetResizeForTest': {
                'limit_side_len': args.det_limit_side_len,
W
WenmuZhou 已提交
45
                'limit_type': args.det_limit_type,
46
            }
M
MissPenguin 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60
        }, {
            'NormalizeImage': {
                'std': [0.229, 0.224, 0.225],
                'mean': [0.485, 0.456, 0.406],
                'scale': '1./255.',
                'order': 'hwc'
            }
        }, {
            'ToCHWImage': None
        }, {
            'KeepKeys': {
                'keep_keys': ['image', 'shape']
            }
        }]
L
LDOUBLEV 已提交
61 62
        postprocess_params = {}
        if self.det_algorithm == "DB":
W
WenmuZhou 已提交
63
            postprocess_params['name'] = 'DBPostProcess'
L
LDOUBLEV 已提交
64 65 66
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
67
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
L
LDOUBLEV 已提交
68
            postprocess_params["use_dilation"] = args.use_dilation
littletomatodonkey's avatar
littletomatodonkey 已提交
69
            postprocess_params["score_mode"] = args.det_db_score_mode
L
LDOUBLEV 已提交
70
            postprocess_params["use_polygon"] = args.det_use_polygon
W
wangjingyeye 已提交
71 72 73 74 75 76 77 78
        elif self.det_algorithm == "DB++":
            postprocess_params['name'] = 'DBPostProcess'
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
            postprocess_params["use_dilation"] = args.use_dilation
            postprocess_params["score_mode"] = args.det_db_score_mode
L
LDOUBLEV 已提交
79
            postprocess_params["use_polygon"] = args.det_use_polygon
W
wangjingyeye 已提交
80 81 82 83 84 85 86 87 88
            pre_process_list[1] = {
                'NormalizeImage': {
                    'std': [1.0, 1.0, 1.0],
                    'mean':
                    [0.48109378172549, 0.45752457890196, 0.40787054090196],
                    'scale': '1./255.',
                    'order': 'hwc'
                }
            }
M
MissPenguin 已提交
89
        elif self.det_algorithm == "EAST":
W
WenmuZhou 已提交
90
            postprocess_params['name'] = 'EASTPostProcess'
M
MissPenguin 已提交
91 92 93 94
            postprocess_params["score_thresh"] = args.det_east_score_thresh
            postprocess_params["cover_thresh"] = args.det_east_cover_thresh
            postprocess_params["nms_thresh"] = args.det_east_nms_thresh
        elif self.det_algorithm == "SAST":
M
MissPenguin 已提交
95
            pre_process_list[0] = {
W
WenmuZhou 已提交
96 97 98
                'DetResizeForTest': {
                    'resize_long': args.det_limit_side_len
                }
M
MissPenguin 已提交
99
            }
W
WenmuZhou 已提交
100
            postprocess_params['name'] = 'SASTPostProcess'
M
MissPenguin 已提交
101 102 103 104 105 106 107 108 109 110 111
            postprocess_params["score_thresh"] = args.det_sast_score_thresh
            postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
            self.det_sast_polygon = args.det_sast_polygon
            if self.det_sast_polygon:
                postprocess_params["sample_pts_num"] = 6
                postprocess_params["expand_scale"] = 1.2
                postprocess_params["shrink_ratio_of_width"] = 0.2
            else:
                postprocess_params["sample_pts_num"] = 2
                postprocess_params["expand_scale"] = 1.0
                postprocess_params["shrink_ratio_of_width"] = 0.3
W
WenmuZhou 已提交
112 113 114 115 116 117 118 119
        elif self.det_algorithm == "PSE":
            postprocess_params['name'] = 'PSEPostProcess'
            postprocess_params["thresh"] = args.det_pse_thresh
            postprocess_params["box_thresh"] = args.det_pse_box_thresh
            postprocess_params["min_area"] = args.det_pse_min_area
            postprocess_params["box_type"] = args.det_pse_box_type
            postprocess_params["scale"] = args.det_pse_scale
            self.det_pse_box_type = args.det_pse_box_type
文幕地方's avatar
文幕地方 已提交
120 121 122 123 124 125 126 127 128 129 130 131
        elif self.det_algorithm == "FCE":
            pre_process_list[0] = {
                'DetResizeForTest': {
                    'rescale_img': [1080, 736]
                }
            }
            postprocess_params['name'] = 'FCEPostProcess'
            postprocess_params["scales"] = args.scales
            postprocess_params["alpha"] = args.alpha
            postprocess_params["beta"] = args.beta
            postprocess_params["fourier_degree"] = args.fourier_degree
            postprocess_params["box_type"] = args.det_fce_box_type
H
huangjun12 已提交
132 133 134
        elif self.det_algorithm == "CT":
            pre_process_list[0] = {'ScaleAlignedShort': {'short_size': 640}}
            postprocess_params['name'] = 'CTPostProcess'
L
LDOUBLEV 已提交
135 136 137
        else:
            logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)
138

W
WenmuZhou 已提交
139 140
        self.preprocess_op = create_operators(pre_process_list)
        self.postprocess_op = build_post_process(postprocess_params)
L
LDOUBLEV 已提交
141 142 143
        self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
            args, 'det', logger)

144 145 146 147 148 149 150 151 152 153
        if self.use_onnx:
            img_h, img_w = self.input_tensor.shape[2:]
            if img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
                pre_process_list[0] = {
                    'DetResizeForTest': {
                        'image_shape': [img_h, img_w]
                    }
                }
        self.preprocess_op = create_operators(pre_process_list)

D
Double_V 已提交
154
        if args.benchmark:
D
Double_V 已提交
155
            import auto_log
D
Double_V 已提交
156
            pid = os.getpid()
L
LDOUBLEV 已提交
157
            gpu_id = utility.get_infer_gpuid()
D
Double_V 已提交
158 159 160 161 162
            self.autolog = auto_log.AutoLogger(
                model_name="det",
                model_precision=args.precision,
                batch_size=1,
                data_shape="dynamic",
L
LDOUBLEV 已提交
163
                save_path=None,
D
Double_V 已提交
164 165 166
                inference_config=self.config,
                pids=pid,
                process_name=None,
167
                gpu_ids=gpu_id if args.use_gpu else None,
D
Double_V 已提交
168 169 170
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
171
                warmup=2,
L
LDOUBLEV 已提交
172
                logger=logger)
L
LDOUBLEV 已提交
173

L
LDOUBLEV 已提交
174
    def order_points_clockwise(self, pts):
L
fix  
LDOUBLEV 已提交
175
        rect = np.zeros((4, 2), dtype="float32")
L
LDOUBLEV 已提交
176 177 178 179 180 181 182 183
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
        diff = np.diff(np.array(tmp), axis=1)
        rect[1] = tmp[np.argmin(diff)]
        rect[3] = tmp[np.argmax(diff)]
        return rect
文幕地方's avatar
文幕地方 已提交
184

D
dyning 已提交
185
    def clip_det_res(self, points, img_height, img_width):
186
        for pno in range(points.shape[0]):
D
dyning 已提交
187 188
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
L
LDOUBLEV 已提交
189 190 191 192 193 194 195
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
D
dyning 已提交
196
            box = self.clip_det_res(box, img_height, img_width)
L
LDOUBLEV 已提交
197 198
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
M
MissPenguin 已提交
199
            if rect_width <= 3 or rect_height <= 3:
L
LDOUBLEV 已提交
200 201 202 203 204
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

205 206 207 208
    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
L
LDOUBLEV 已提交
209 210
            if type(box) is list:
                box = np.array(box)
211 212 213 214
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes
215

L
LDOUBLEV 已提交
216 217
    def __call__(self, img):
        ori_im = img.copy()
W
WenmuZhou 已提交
218
        data = {'image': img}
L
LDOUBLEV 已提交
219 220

        st = time.time()
L
LDOUBLEV 已提交
221

littletomatodonkey's avatar
littletomatodonkey 已提交
222
        if self.args.benchmark:
D
Double_V 已提交
223
            self.autolog.times.start()
L
LDOUBLEV 已提交
224

W
WenmuZhou 已提交
225 226 227
        data = transform(data, self.preprocess_op)
        img, shape_list = data
        if img is None:
L
LDOUBLEV 已提交
228
            return None, 0
W
WenmuZhou 已提交
229 230
        img = np.expand_dims(img, axis=0)
        shape_list = np.expand_dims(shape_list, axis=0)
231
        img = img.copy()
L
LDOUBLEV 已提交
232

littletomatodonkey's avatar
littletomatodonkey 已提交
233
        if self.args.benchmark:
D
Double_V 已提交
234
            self.autolog.times.stamp()
T
tink2123 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247
        if self.use_onnx:
            input_dict = {}
            input_dict[self.input_tensor.name] = img
            outputs = self.predictor.run(self.output_tensors, input_dict)
        else:
            self.input_tensor.copy_from_cpu(img)
            self.predictor.run()
            outputs = []
            for output_tensor in self.output_tensors:
                output = output_tensor.copy_to_cpu()
                outputs.append(output)
            if self.args.benchmark:
                self.autolog.times.stamp()
L
LDOUBLEV 已提交
248

M
MissPenguin 已提交
249 250 251 252 253 254 255 256 257
        preds = {}
        if self.det_algorithm == "EAST":
            preds['f_geo'] = outputs[0]
            preds['f_score'] = outputs[1]
        elif self.det_algorithm == 'SAST':
            preds['f_border'] = outputs[0]
            preds['f_score'] = outputs[1]
            preds['f_tco'] = outputs[2]
            preds['f_tvo'] = outputs[3]
W
wangjingyeye 已提交
258
        elif self.det_algorithm in ['DB', 'PSE', 'DB++']:
W
WenmuZhou 已提交
259
            preds['maps'] = outputs[0]
文幕地方's avatar
文幕地方 已提交
260 261 262
        elif self.det_algorithm == 'FCE':
            for i, output in enumerate(outputs):
                preds['level_{}'.format(i)] = output
H
huangjun12 已提交
263 264 265
        elif self.det_algorithm == "CT":
            preds['maps'] = outputs[0]
            preds['score'] = outputs[1]
W
WenmuZhou 已提交
266 267
        else:
            raise NotImplementedError
L
LDOUBLEV 已提交
268

W
WenmuZhou 已提交
269 270
        post_result = self.postprocess_op(preds, shape_list)
        dt_boxes = post_result[0]['points']
L
LDOUBLEV 已提交
271

文幕地方's avatar
文幕地方 已提交
272
        if (self.det_algorithm == "SAST" and self.det_sast_polygon) or (
H
huangjun12 已提交
273
                self.det_algorithm in ["PSE", "FCE", "CT"] and
文幕地方's avatar
文幕地方 已提交
274
                self.postprocess_op.box_type == 'poly'):
W
WenmuZhou 已提交
275
            dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
L
LDOUBLEV 已提交
276 277
        elif 'DB' in self.det_algorithm and self.postprocess_op.use_polygon is True:
            dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
M
MissPenguin 已提交
278 279
        else:
            dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
L
LDOUBLEV 已提交
280

littletomatodonkey's avatar
littletomatodonkey 已提交
281
        if self.args.benchmark:
D
Double_V 已提交
282
            self.autolog.times.end(stamp=True)
L
LDOUBLEV 已提交
283 284
        et = time.time()
        return dt_boxes, et - st
L
LDOUBLEV 已提交
285 286 287 288


if __name__ == "__main__":
    args = utility.parse_args()
L
LDOUBLEV 已提交
289
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
290 291
    text_detector = TextDetector(args)
    total_time = 0
A
andyjpaddle 已提交
292 293
    draw_img_save_dir = args.draw_img_save_dir
    os.makedirs(draw_img_save_dir, exist_ok=True)
L
LDOUBLEV 已提交
294

L
LDOUBLEV 已提交
295 296
    if args.warmup:
        img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
297
        for i in range(2):
L
LDOUBLEV 已提交
298 299
            res = text_detector(img)

L
LDOUBLEV 已提交
300
    save_results = []
A
andyjpaddle 已提交
301 302 303
    for idx, image_file in enumerate(image_file_list):
        img, flag_gif, flag_pdf = check_and_read(image_file)
        if not flag_gif and not flag_pdf:
L
LDOUBLEV 已提交
304
            img = cv2.imread(image_file)
A
andyjpaddle 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318
        if not flag_pdf:
            if img is None:
                logger.debug("error in loading image:{}".format(image_file))
                continue
            imgs = [img]
        else:
            page_num = args.page_num
            if page_num > len(img) or page_num == 0:
                page_num = len(img)
            imgs = img[:page_num]
        for index, img in enumerate(imgs):
            st = time.time()
            dt_boxes, _ = text_detector(img)
            elapse = time.time() - st
L
LDOUBLEV 已提交
319
            total_time += elapse
A
andyjpaddle 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
            if len(imgs) > 1:
                save_pred = os.path.basename(image_file) + '_' + str(
                    index) + "\t" + str(
                        json.dumps([x.tolist() for x in dt_boxes])) + "\n"
            else:
                save_pred = os.path.basename(image_file) + "\t" + str(
                    json.dumps([x.tolist() for x in dt_boxes])) + "\n"
            save_results.append(save_pred)
            logger.info(save_pred)
            if len(imgs) > 1:
                logger.info("{}_{} The predict time of {}: {}".format(
                    idx, index, image_file, elapse))
            else:
                logger.info("{} The predict time of {}: {}".format(
                    idx, image_file, elapse))
A
andyjpaddle 已提交
335 336 337

            src_im = utility.draw_text_det_res(dt_boxes, img)

A
andyjpaddle 已提交
338 339 340 341 342 343 344 345 346 347 348 349
            if flag_gif:
                save_file = image_file[:-3] + "png"
            elif flag_pdf:
                save_file = image_file.replace('.pdf',
                                               '_' + str(index) + '.png')
            else:
                save_file = image_file
            img_path = os.path.join(
                draw_img_save_dir,
                "det_res_{}".format(os.path.basename(save_file)))
            cv2.imwrite(img_path, src_im)
            logger.info("The visualized image saved in {}".format(img_path))
L
LDOUBLEV 已提交
350

A
andyjpaddle 已提交
351
    with open(os.path.join(draw_img_save_dir, "det_results.txt"), 'w') as f:
L
LDOUBLEV 已提交
352 353
        f.writelines(save_results)
        f.close()
D
Double_V 已提交
354 355
    if args.benchmark:
        text_detector.autolog.report()