algorithm_rec_visionlan.md 5.9 KB
Newer Older
A
andyjpaddle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
# 场景文本识别算法-VisionLAN

- [1. 算法简介](#1)
- [2. 环境配置](#2)
- [3. 模型训练、评估、预测](#3)
    - [3.1 训练](#3-1)
    - [3.2 评估](#3-2)
    - [3.3 预测](#3-3)
- [4. 推理部署](#4)
    - [4.1 Python推理](#4-1)
    - [4.2 C++推理](#4-2)
    - [4.3 Serving服务化部署](#4-3)
    - [4.4 更多推理部署](#4-4)
- [5. FAQ](#5)

<a name="1"></a>
## 1. 算法简介

论文信息:
> [From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network](https://arxiv.org/abs/2108.09661)
> Yuxin Wang, Hongtao Xie, Shancheng Fang, Jing Wang, Shenggao Zhu, Yongdong Zhang
> ICCV, 2021


<a name="model"></a>
`VisionLAN`使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下:

|模型|骨干网络|配置文件|Acc|下载链接|
| --- | --- | --- | --- | --- |
|VisionLAN|ResNet45|[rec_r45_visionlan.yml](../../configs/rec/rec_r45_visionlan.yml)|90.3%|[预训练、训练模型](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar)|

<a name="2"></a>
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。


<a name="3"></a>
## 3. 模型训练、评估、预测

<a name="3-1"></a>
### 3.1 模型训练

请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练`VisionLAN`识别模型时需要**更换配置文件**`VisionLAN`[配置文件](../../configs/rec/rec_r45_visionlan.yml)

#### 启动训练


具体地,在完成数据准备后,便可以启动训练,训练命令如下:
```shell
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_r45_visionlan.yml

#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_r45_visionlan.yml
```

<a name="3-2"></a>
### 3.2 评估

可下载已训练完成的[模型文件](#model),使用如下命令进行评估:

```shell
# 注意将pretrained_model的路径设置为本地路径。
python3 tools/eval.py -c configs/rec/rec_r45_visionlan.yml -o Global.pretrained_model=./rec_r45_visionlan_train/best_accuracy
```

<a name="3-3"></a>
### 3.3 预测

使用如下命令进行单张图片预测:
```shell
# 注意将pretrained_model的路径设置为本地路径。
python3 tools/infer_rec.py -c configs/rec/rec_r45_visionlan.yml -o Global.infer_img='./doc/imgs_words/en/word_2.png' Global.pretrained_model=./rec_r45_visionlan_train/best_accuracy
# 预测文件夹下所有图像时,可修改infer_img为文件夹,如 Global.infer_img='./doc/imgs_words_en/'。
```


<a name="4"></a>
## 4. 推理部署

<a name="4-1"></a>
### 4.1 Python推理
首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar)),可以使用如下命令进行转换:

```shell
# 注意将pretrained_model的路径设置为本地路径。
python3 tools/export_model.py -c configs/rec/rec_r45_visionlan.yml -o Global.pretrained_model=./rec_r45_visionlan_train/best_accuracy Global.save_inference_dir=./inference/rec_r45_visionlan/
```
**注意:**
- 如果您是在自己的数据集上训练的模型,并且调整了字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
- 如果您修改了训练时的输入大小,请修改`tools/export_model.py`文件中的对应VisionLAN的`infer_shape`

转换成功后,在目录下有三个文件:
```
./inference/rec_r45_visionlan/
    ├── inference.pdiparams         # 识别inference模型的参数文件
    ├── inference.pdiparams.info    # 识别inference模型的参数信息,可忽略
    └── inference.pdmodel           # 识别inference模型的program文件
```

执行如下命令进行模型推理:

```shell
A
andyjpaddle 已提交
104
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words/en/word_2.png' --rec_model_dir='./inference/rec_r45_visionlan/' --rec_algorithm='VisionLAN' --rec_image_shape='3,64,256' --rec_char_dict_path='./ppocr/utils/ic15_dict.txt' --use_space_char=False
A
andyjpaddle 已提交
105 106 107 108 109 110 111 112
# 预测文件夹下所有图像时,可修改image_dir为文件夹,如 --image_dir='./doc/imgs_words_en/'。
```

![](../imgs_words/en/word_2.png)

执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:
结果如下:
```shell
A
andyjpaddle 已提交
113
Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.9999493)
A
andyjpaddle 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
```

**注意**

- 训练上述模型采用的图像分辨率是[3,64,256],需要通过参数`rec_image_shape`设置为您训练时的识别图像形状。
- 在推理时需要设置参数`rec_char_dict_path`指定字典,如果您修改了字典,请修改该参数为您的字典文件。
- 如果您修改了预处理方法,需修改`tools/infer/predict_rec.py`中VisionLAN的预处理为您的预处理方法。


<a name="4-2"></a>
### 4.2 C++推理部署

由于C++预处理后处理还未支持VisionLAN,所以暂未支持

<a name="4-3"></a>
### 4.3 Serving服务化部署

暂不支持

<a name="4-4"></a>
### 4.4 更多推理部署

暂不支持

<a name="5"></a>
## 5. FAQ

1. MJSynth和SynthText两种数据集来自于[VisionLAN源repo](https://github.com/wangyuxin87/VisionLAN)
A
andyjpaddle 已提交
142
2. 我们使用VisionLAN作者提供的预训练模型进行finetune训练,预训练模型配套字典为'ppocr/utils/ic15_dict.txt'。
A
andyjpaddle 已提交
143 144 145 146 147 148 149 150 151 152 153 154

## 引用

```bibtex
@inproceedings{wang2021two,
  title={From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network},
  author={Wang, Yuxin and Xie, Hongtao and Fang, Shancheng and Wang, Jing and Zhu, Shenggao and Zhang, Yongdong},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={14194--14203},
  year={2021}
}
```