algorithm_rec_visionlan.md 5.8 KB
Newer Older
A
andyjpaddle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
# 场景文本识别算法-VisionLAN

- [1. 算法简介](#1)
- [2. 环境配置](#2)
- [3. 模型训练、评估、预测](#3)
    - [3.1 训练](#3-1)
    - [3.2 评估](#3-2)
    - [3.3 预测](#3-3)
- [4. 推理部署](#4)
    - [4.1 Python推理](#4-1)
    - [4.2 C++推理](#4-2)
    - [4.3 Serving服务化部署](#4-3)
    - [4.4 更多推理部署](#4-4)
- [5. FAQ](#5)

<a name="1"></a>
## 1. 算法简介

论文信息:
> [From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network](https://arxiv.org/abs/2108.09661)
> Yuxin Wang, Hongtao Xie, Shancheng Fang, Jing Wang, Shenggao Zhu, Yongdong Zhang
> ICCV, 2021


<a name="model"></a>
`VisionLAN`使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下:

|模型|骨干网络|配置文件|Acc|下载链接|
| --- | --- | --- | --- | --- |
|VisionLAN|ResNet45|[rec_r45_visionlan.yml](../../configs/rec/rec_r45_visionlan.yml)|90.3%|[预训练、训练模型](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar)|

<a name="2"></a>
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。


<a name="3"></a>
## 3. 模型训练、评估、预测

<a name="3-1"></a>
### 3.1 模型训练

请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练`VisionLAN`识别模型时需要**更换配置文件**`VisionLAN`[配置文件](../../configs/rec/rec_r45_visionlan.yml)

#### 启动训练


具体地,在完成数据准备后,便可以启动训练,训练命令如下:
```shell
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_r45_visionlan.yml

#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_r45_visionlan.yml
```

<a name="3-2"></a>
### 3.2 评估

可下载已训练完成的[模型文件](#model),使用如下命令进行评估:

```shell
# 注意将pretrained_model的路径设置为本地路径。
python3 tools/eval.py -c configs/rec/rec_r45_visionlan.yml -o Global.pretrained_model=./rec_r45_visionlan_train/best_accuracy
```

<a name="3-3"></a>
### 3.3 预测

使用如下命令进行单张图片预测:
```shell
# 注意将pretrained_model的路径设置为本地路径。
python3 tools/infer_rec.py -c configs/rec/rec_r45_visionlan.yml -o Global.infer_img='./doc/imgs_words/en/word_2.png' Global.pretrained_model=./rec_r45_visionlan_train/best_accuracy
# 预测文件夹下所有图像时,可修改infer_img为文件夹,如 Global.infer_img='./doc/imgs_words_en/'。
```


<a name="4"></a>
## 4. 推理部署

<a name="4-1"></a>
### 4.1 Python推理
首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar)),可以使用如下命令进行转换:

```shell
# 注意将pretrained_model的路径设置为本地路径。
python3 tools/export_model.py -c configs/rec/rec_r45_visionlan.yml -o Global.pretrained_model=./rec_r45_visionlan_train/best_accuracy Global.save_inference_dir=./inference/rec_r45_visionlan/
```
**注意:**
- 如果您是在自己的数据集上训练的模型,并且调整了字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
- 如果您修改了训练时的输入大小,请修改`tools/export_model.py`文件中的对应VisionLAN的`infer_shape`

转换成功后,在目录下有三个文件:
```
./inference/rec_r45_visionlan/
    ├── inference.pdiparams         # 识别inference模型的参数文件
    ├── inference.pdiparams.info    # 识别inference模型的参数信息,可忽略
    └── inference.pdmodel           # 识别inference模型的program文件
```

执行如下命令进行模型推理:

```shell
A
andyjpaddle 已提交
104
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words/en/word_2.png' --rec_model_dir='./inference/rec_r45_visionlan/' --rec_algorithm='VisionLAN' --rec_image_shape='3,64,256' --rec_char_dict_path='./ppocr/utils/ic15_dict.txt' --use_space_char=False
A
andyjpaddle 已提交
105 106 107 108 109 110 111 112
# 预测文件夹下所有图像时,可修改image_dir为文件夹,如 --image_dir='./doc/imgs_words_en/'。
```

![](../imgs_words/en/word_2.png)

执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:
结果如下:
```shell
A
andyjpaddle 已提交
113
Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.9999493)
A
andyjpaddle 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
```

**注意**

- 训练上述模型采用的图像分辨率是[3,64,256],需要通过参数`rec_image_shape`设置为您训练时的识别图像形状。
- 在推理时需要设置参数`rec_char_dict_path`指定字典,如果您修改了字典,请修改该参数为您的字典文件。
- 如果您修改了预处理方法,需修改`tools/infer/predict_rec.py`中VisionLAN的预处理为您的预处理方法。


<a name="4-2"></a>
### 4.2 C++推理部署

由于C++预处理后处理还未支持VisionLAN,所以暂未支持

<a name="4-3"></a>
### 4.3 Serving服务化部署

暂不支持

<a name="4-4"></a>
### 4.4 更多推理部署

暂不支持

<a name="5"></a>
## 5. FAQ

1. MJSynth和SynthText两种数据集来自于[VisionLAN源repo](https://github.com/wangyuxin87/VisionLAN)
2. 我们使用VisionLAN作者提供的预训练模型进行finetune训练。

## 引用

```bibtex
@inproceedings{wang2021two,
  title={From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network},
  author={Wang, Yuxin and Xie, Hongtao and Fang, Shancheng and Wang, Jing and Zhu, Shenggao and Zhang, Yongdong},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={14194--14203},
  year={2021}
}
```