program.py 23.4 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27 28 29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
30 31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
33
from ppocr.utils.logging import get_logger
34
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
35
from ppocr.utils import profiler
D
dyning 已提交
36
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
37

D
dyning 已提交
38

L
LDOUBLEV 已提交
39 40 41 42 43 44 45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
46 47 48 49 50
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
51 52
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
53
        )
L
LDOUBLEV 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
82 83
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
84 85


86
def merge_config(config, opts):
L
LDOUBLEV 已提交
87 88 89 90 91 92
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
93
    for key, value in opts.items():
L
LDOUBLEV 已提交
94
        if "." not in key:
95 96
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
97
            else:
98
                config[key] = value
L
LDOUBLEV 已提交
99 100
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
101
            assert (
102
                sub_keys[0] in config
103 104
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
105 106
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
107 108 109 110 111
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
112
    return config
L
LDOUBLEV 已提交
113 114


X
xiaoting 已提交
115
def check_device(use_gpu, use_xpu=False):
L
LDOUBLEV 已提交
116 117 118 119
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
120 121 122 123
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
124 125 126
          "model on CPU"

    try:
X
xiaoting 已提交
127 128
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
129
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
130 131 132 133
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
134 135 136 137 138
            sys.exit(1)
    except Exception as e:
        pass


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass

文幕地方's avatar
文幕地方 已提交
157

文幕地方's avatar
文幕地方 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
def to_float32(preds):
    if isinstance(preds, dict):
        for k in preds:
            if isinstance(preds[k], dict) or isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
            else:
                preds[k] = preds[k].astype(paddle.float32)
    elif isinstance(preds, list):
        for k in range(len(preds)):
            if isinstance(preds[k], dict):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
            else:
                preds[k] = preds[k].astype(paddle.float32)
    else:
        preds = preds.astype(paddle.float32)
    return preds
176

文幕地方's avatar
文幕地方 已提交
177

W
WenmuZhou 已提交
178
def train(config,
D
dyning 已提交
179 180 181
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
182 183 184 185 186 187 188 189
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
190
          log_writer=None,
S
stephon 已提交
191
          scaler=None):
W
WenmuZhou 已提交
192 193
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
194
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
195 196 197 198
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
199
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
200

D
dyning 已提交
201
    global_step = 0
202 203
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
204 205 206 207
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
208 209
        if len(valid_dataloader) == 0:
            logger.info(
210 211
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
212 213
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
214
        logger.info(
215 216
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
217
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
218 219
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
220 221
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
222 223 224 225
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
226
    model_average = False
W
WenmuZhou 已提交
227 228
    model.train()

T
tink2123 已提交
229
    use_srn = config['Architecture']['algorithm'] == "SRN"
xuyang2233's avatar
add pr  
xuyang2233 已提交
230
    extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR", "SPIN"]
A
andyjpaddle 已提交
231
    extra_input = False
A
andyjpaddle 已提交
232
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
233 234 235
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
236 237
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
238
    try:
L
fix bug  
LDOUBLEV 已提交
239
        model_type = config['Architecture']['model_type']
240
    except:
L
fix bug  
LDOUBLEV 已提交
241
        model_type = None
A
andyjpaddle 已提交
242

T
tink2123 已提交
243
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
244

245 246 247 248
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
249 250
    train_reader_cost = 0.0
    train_batch_cost = 0.0
251
    reader_start = time.time()
252
    eta_meter = AverageMeter()
253 254 255

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
256

T
tink2123 已提交
257
    for epoch in range(start_epoch, epoch_num + 1):
258 259 260 261 262
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
263
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
264
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
265
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
266
            if idx >= max_iter:
W
WenmuZhou 已提交
267 268 269
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
270
            if use_srn:
T
tink2123 已提交
271
                model_average = True
S
stephon 已提交
272 273 274

            # use amp
            if scaler:
文幕地方's avatar
文幕地方 已提交
275
                with paddle.amp.auto_cast(level='O2'):
S
stephon 已提交
276 277
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
A
andyjpaddle 已提交
278 279
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
S
stephon 已提交
280 281
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
282 283 284 285 286 287
                preds = to_float32(preds)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
T
tink2123 已提交
288
            else:
S
stephon 已提交
289 290
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
291
                elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
292
                    preds = model(batch)
S
stephon 已提交
293 294
                else:
                    preds = model(images)
文幕地方's avatar
文幕地方 已提交
295 296
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
S
stephon 已提交
297 298
                avg_loss.backward()
                optimizer.step()
W
WenmuZhou 已提交
299
            optimizer.clear_grad()
W
WenmuZhou 已提交
300

301 302
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
文幕地方's avatar
文幕地方 已提交
303
                if model_type in ['kie']:
304
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
305 306 307
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
308
                else:
A
andyjpaddle 已提交
309 310 311 312 313 314
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
                    else:
                        post_result = post_process_class(preds, batch[1])
315 316 317 318
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

319 320 321
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
322
            global_step += 1
文幕地方's avatar
文幕地方 已提交
323
            total_samples += len(images)
W
WenmuZhou 已提交
324

D
dyning 已提交
325 326
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
327 328 329 330 331 332

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

333
            if log_writer is not None and dist.get_rank() == 0:
文幕地方's avatar
文幕地方 已提交
334 335
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
336

337 338 339
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
340
                logs = train_stats.log()
L
LDOUBLEV 已提交
341

342 343 344 345 346
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
L
LDOUBLEV 已提交
347
                       'ips: {:.5f} samples/s, eta: {}'.format(
348 349 350 351 352
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
353
                logger.info(strs)
354

文幕地方's avatar
文幕地方 已提交
355
                total_samples = 0
356 357
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
358 359
            # eval
            if global_step > start_eval_step and \
360 361
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
362 363 364 365 366 367 368
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
369 370 371 372 373
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
374
                    model_type,
T
tink2123 已提交
375
                    extra_input=extra_input)
L
LDOUBLEV 已提交
376 377 378
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
379 380

                # logger metric
381
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
382 383
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
384

L
LDOUBLEV 已提交
385
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
386
                        main_indicator]:
L
LDOUBLEV 已提交
387
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
388 389 390 391 392 393
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
394
                        config,
W
WenmuZhou 已提交
395 396 397
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
398 399
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
400
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
401 402 403 404
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
405
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
406 407 408 409 410 411 412 413 414 415 416 417
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
418

文幕地方's avatar
文幕地方 已提交
419
            reader_start = time.time()
W
WenmuZhou 已提交
420 421 422 423 424 425
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
426
                config,
W
WenmuZhou 已提交
427 428 429
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
430 431
                epoch=epoch,
                global_step=global_step)
432

433 434
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
435

W
WenmuZhou 已提交
436 437 438 439 440 441
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
442
                config,
W
WenmuZhou 已提交
443 444 445
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
446 447
                epoch=epoch,
                global_step=global_step)
448
            if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
449 450
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
451

L
LDOUBLEV 已提交
452
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
453 454
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
455 456
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
457 458 459
    return


M
refine  
MissPenguin 已提交
460 461 462 463
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
464
         model_type=None,
T
tink2123 已提交
465
         extra_input=False):
W
WenmuZhou 已提交
466 467 468 469
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
470 471 472 473 474
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
475 476
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
W
WenmuZhou 已提交
477
        for idx, batch in enumerate(valid_dataloader):
478
            if idx >= max_iter:
W
WenmuZhou 已提交
479
                break
W
fix bug  
WenmuZhou 已提交
480
            images = batch[0]
W
WenmuZhou 已提交
481
            start = time.time()
T
tink2123 已提交
482
            if model_type == 'table' or extra_input:
M
refine  
MissPenguin 已提交
483
                preds = model(images, data=batch[1:])
484
            elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
485
                preds = model(batch)
X
xiaoting 已提交
486
            else:
L
LDOUBLEV 已提交
487
                preds = model(images)
488 489 490 491 492 493
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
494 495 496
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
文幕地方's avatar
文幕地方 已提交
497
            if model_type in ['kie']:
498
                eval_class(preds, batch_numpy)
文幕地方's avatar
文幕地方 已提交
499
            elif model_type in ['table', 'vqa']:
500 501
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
M
MissPenguin 已提交
502
            else:
503 504
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
505

W
fix bug  
WenmuZhou 已提交
506
            pbar.update(1)
W
WenmuZhou 已提交
507
            total_frame += len(images)
L
LDOUBLEV 已提交
508 509
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
510

W
fix bug  
WenmuZhou 已提交
511
    pbar.close()
W
WenmuZhou 已提交
512
    model.train()
L
LDOUBLEV 已提交
513 514
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
515

T
tink2123 已提交
516

B
Bin Lu 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


566
def preprocess(is_train=False):
L
licx 已提交
567
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
568
    profiler_options = FLAGS.profiler_options
L
licx 已提交
569
    config = load_config(FLAGS.config)
570
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
571
    profile_dic = {"profiler_options": FLAGS.profiler_options}
572
    config = merge_config(config, profile_dic)
L
licx 已提交
573

W
WenmuZhou 已提交
574 575 576 577 578 579 580 581 582 583
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
584
    logger = get_logger(log_file=log_file)
L
licx 已提交
585 586 587

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
X
xiaoting 已提交
588
    use_xpu = config['Global'].get('use_xpu', False)
L
licx 已提交
589

590 591 592 593 594 595
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

W
WenmuZhou 已提交
596 597
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
598
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
599
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
600
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
文幕地方's avatar
文幕地方 已提交
601
        'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN', 'SLANet'
W
WenmuZhou 已提交
602
    ]
L
licx 已提交
603

604
    if use_xpu:
X
xiaoting 已提交
605 606 607 608 609 610
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
    check_device(use_gpu, use_xpu)

W
WenmuZhou 已提交
611
    device = paddle.set_device(device)
D
dyning 已提交
612

D
dyning 已提交
613
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
614

615 616
    loggers = []

617
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
618
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
619
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
620
        log_writer = VDLLogger(save_model_dir)
621
        loggers.append(log_writer)
文幕地方's avatar
文幕地方 已提交
622 623
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
624 625 626 627 628 629 630 631
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
632
        loggers.append(log_writer)
D
dyning 已提交
633
    else:
634
        log_writer = None
D
dyning 已提交
635
    print_dict(config, logger)
636 637 638 639 640 641

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
642 643
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
644
    return config, device, logger, log_writer