readme.md 11.9 KB
Newer Older
M
MissPenguin 已提交
1
English | [简体中文](readme_ch.md)
文幕地方's avatar
文幕地方 已提交
2

M
update  
MissPenguin 已提交
3
# Server-side C++ Inference
文幕地方's avatar
文幕地方 已提交
4

M
MissPenguin 已提交
5 6 7 8 9 10 11 12 13 14 15 16
- [1. Prepare the Environment](#1)
    - [1.1 Environment](#11)
    - [1.2 Compile OpenCV](#12)
    - [1.3 Compile or Download or the Paddle Inference Library](#13)
- [2. Compile and Run the Demo](#2)
    - [2.1 Export the inference model](#21)
    - [2.2 Compile PaddleOCR C++ inference demo](#22)
    - [2.3 Run the demo](#23)
- [3. FAQ](#3)


This chapter introduces the C++ deployment steps of the PaddleOCR model. C++ is better than Python in terms of performance. Therefore, in CPU and GPU deployment scenarios, C++ deployment is mostly used.
M
update  
MissPenguin 已提交
17
This section will introduce how to configure the C++ environment and deploy PaddleOCR in Linux (CPU\GPU) environment. For Windows deployment please refer to [Windows](./docs/windows_vs2019_build.md) compilation guidelines.
文幕地方's avatar
文幕地方 已提交
18

19

M
MissPenguin 已提交
20
<a name="1"></a>
M
update  
MissPenguin 已提交
21
## 1. Prepare the Environment
littletomatodonkey's avatar
littletomatodonkey 已提交
22

M
MissPenguin 已提交
23 24
<a name="11"></a>
### 1.1 Environment
littletomatodonkey's avatar
littletomatodonkey 已提交
25

M
update  
MissPenguin 已提交
26 27
- Linux, docker is recommended.
- Windows.
28 29


M
MissPenguin 已提交
30 31
<a name="12"></a>
### 1.2 Compile OpenCV
32

M
update  
MissPenguin 已提交
33
* First of all, you need to download the source code compiled package in the Linux environment from the OpenCV official website. Taking OpenCV 3.4.7 as an example, the download command is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
34

littletomatodonkey's avatar
littletomatodonkey 已提交
35
```bash
W
WenmuZhou 已提交
36
cd deploy/cpp_infer
littletomatodonkey's avatar
littletomatodonkey 已提交
37 38
wget https://paddleocr.bj.bcebos.com/libs/opencv/opencv-3.4.7.tar.gz
tar -xf opencv-3.4.7.tar.gz
littletomatodonkey's avatar
littletomatodonkey 已提交
39 40
```

M
update  
MissPenguin 已提交
41 42 43
Finally, you will see the folder of `opencv-3.4.7/` in the current directory.

* Compile OpenCV, the OpenCV source path (`root_path`) and installation path (`install_path`) should be set by yourself. Enter the OpenCV source code path and compile it in the following way.
littletomatodonkey's avatar
littletomatodonkey 已提交
44 45 46


```shell
M
update  
MissPenguin 已提交
47
root_path=your_opencv_root_path
littletomatodonkey's avatar
littletomatodonkey 已提交
48 49
install_path=${root_path}/opencv3

M
update  
MissPenguin 已提交
50 51 52
rm -rf build
mkdir build
cd build
littletomatodonkey's avatar
littletomatodonkey 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

cmake .. \
    -DCMAKE_INSTALL_PREFIX=${install_path} \
    -DCMAKE_BUILD_TYPE=Release \
    -DBUILD_SHARED_LIBS=OFF \
    -DWITH_IPP=OFF \
    -DBUILD_IPP_IW=OFF \
    -DWITH_LAPACK=OFF \
    -DWITH_EIGEN=OFF \
    -DCMAKE_INSTALL_LIBDIR=lib64 \
    -DWITH_ZLIB=ON \
    -DBUILD_ZLIB=ON \
    -DWITH_JPEG=ON \
    -DBUILD_JPEG=ON \
    -DWITH_PNG=ON \
    -DBUILD_PNG=ON \
    -DWITH_TIFF=ON \
    -DBUILD_TIFF=ON

make -j
make install
```

M
update  
MissPenguin 已提交
76
In the above commands, `root_path` is the downloaded OpenCV source code path, and `install_path` is the installation path of OpenCV. After `make install` is completed, the OpenCV header file and library file will be generated in this folder for later OCR source code compilation.
littletomatodonkey's avatar
littletomatodonkey 已提交
77

littletomatodonkey's avatar
littletomatodonkey 已提交
78 79


M
update  
MissPenguin 已提交
80
The final file structure under the OpenCV installation path is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
81 82 83 84 85 86 87 88 89 90

```
opencv3/
|-- bin
|-- include
|-- lib
|-- lib64
|-- share
```

M
MissPenguin 已提交
91 92
<a name="13"></a>
### 1.3 Compile or Download or the Paddle Inference Library
93

M
update  
MissPenguin 已提交
94
* There are 2 ways to obtain the Paddle inference library, described in detail below.
littletomatodonkey's avatar
littletomatodonkey 已提交
95

M
MissPenguin 已提交
96
#### 1.3.1 Direct download and installation
littletomatodonkey's avatar
littletomatodonkey 已提交
97

M
update  
MissPenguin 已提交
98
[Paddle inference library official website](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#linux). You can review and select the appropriate version of the inference library on the official website.
L
LDOUBLEV 已提交
99

littletomatodonkey's avatar
littletomatodonkey 已提交
100

M
update  
MissPenguin 已提交
101
* After downloading, use the following command to extract files.
littletomatodonkey's avatar
littletomatodonkey 已提交
102 103 104 105 106

```
tar -xf paddle_inference.tgz
```

107
Finally you will see the folder of `paddle_inference/` in the current path.
M
update  
MissPenguin 已提交
108

M
MissPenguin 已提交
109
#### 1.3.2 Compile the inference source code
M
update  
MissPenguin 已提交
110 111
* If you want to get the latest Paddle inference library features, you can download the latest code from Paddle GitHub repository and compile the inference library from the source code. It is recommended to download the inference library with paddle version greater than or equal to 2.0.1.
* You can refer to [Paddle inference library] (https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html) to get the Paddle source code from GitHub, and then compile To generate the latest inference library. The method of using git to access the code is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
112

littletomatodonkey's avatar
littletomatodonkey 已提交
113 114 115

```shell
git clone https://github.com/PaddlePaddle/Paddle.git
L
LDOUBLEV 已提交
116
git checkout develop
littletomatodonkey's avatar
littletomatodonkey 已提交
117 118
```

M
update  
MissPenguin 已提交
119
* Enter the Paddle directory and run the following commands to compile the paddle inference library.
littletomatodonkey's avatar
littletomatodonkey 已提交
120 121 122 123 124 125 126 127 128

```shell
rm -rf build
mkdir build
cd build

cmake  .. \
    -DWITH_CONTRIB=OFF \
    -DWITH_MKL=ON \
littletomatodonkey's avatar
littletomatodonkey 已提交
129
    -DWITH_MKLDNN=ON  \
littletomatodonkey's avatar
littletomatodonkey 已提交
130 131 132 133 134
    -DWITH_TESTING=OFF \
    -DCMAKE_BUILD_TYPE=Release \
    -DWITH_INFERENCE_API_TEST=OFF \
    -DON_INFER=ON \
    -DWITH_PYTHON=ON
littletomatodonkey's avatar
littletomatodonkey 已提交
135
make -j
littletomatodonkey's avatar
littletomatodonkey 已提交
136 137 138
make inference_lib_dist
```

M
update  
MissPenguin 已提交
139
For more compilation parameter options, please refer to the [document](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#congyuanmabianyi).
littletomatodonkey's avatar
littletomatodonkey 已提交
140 141


M
update  
MissPenguin 已提交
142
* After the compilation process, you can see the following files in the folder of `build/paddle_inference_install_dir/`.
littletomatodonkey's avatar
littletomatodonkey 已提交
143 144

```
L
LDOUBLEV 已提交
145
build/paddle_inference_install_dir/
littletomatodonkey's avatar
littletomatodonkey 已提交
146 147 148 149 150 151
|-- CMakeCache.txt
|-- paddle
|-- third_party
|-- version.txt
```

M
update  
MissPenguin 已提交
152
`paddle` is the Paddle library required for C++ prediction later, and `version.txt` contains the version information of the current inference library.
littletomatodonkey's avatar
littletomatodonkey 已提交
153

littletomatodonkey's avatar
littletomatodonkey 已提交
154

M
MissPenguin 已提交
155
<a name="2"></a>
M
update  
MissPenguin 已提交
156
## 2. Compile and Run the Demo
littletomatodonkey's avatar
littletomatodonkey 已提交
157

M
MissPenguin 已提交
158
<a name="21"></a>
M
update  
MissPenguin 已提交
159
### 2.1 Export the inference model
160

M
update  
MissPenguin 已提交
161
* You can refer to [Model inference](../../doc/doc_ch/inference.md) and export the inference model. After the model is exported, assuming it is placed in the `inference` directory, the directory structure is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
162 163 164 165

```
inference/
|-- det_db
M
MissPenguin 已提交
166 167
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey 已提交
168
|-- rec_rcnn
M
MissPenguin 已提交
169 170
|   |--inference.pdiparams
|   |--inference.pdmodel
171 172 173
|-- cls
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey 已提交
174 175 176
```


M
MissPenguin 已提交
177
<a name="22"></a>
M
update  
MissPenguin 已提交
178 179 180
### 2.2 Compile PaddleOCR C++ inference demo

* The compilation commands are as follows. The addresses of Paddle C++ inference library, opencv and other Dependencies need to be replaced with the actual addresses on your own machines.
littletomatodonkey's avatar
littletomatodonkey 已提交
181

M
MissPenguin 已提交
182
```shell
M
MissPenguin 已提交
183
sh tools/build.sh
littletomatodonkey's avatar
littletomatodonkey 已提交
184 185
```

M
update  
MissPenguin 已提交
186
Specifically, you should modify the paths in `tools/build.sh`. The related content is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
187 188

```shell
littletomatodonkey's avatar
littletomatodonkey 已提交
189 190 191
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
M
update  
MissPenguin 已提交
192
CUDNN_LIB_DIR=your_cudnn_lib_dir
littletomatodonkey's avatar
littletomatodonkey 已提交
193 194
```

M
update  
MissPenguin 已提交
195 196 197
`OPENCV_DIR` is the OpenCV installation path; `LIB_DIR` is the download (`paddle_inference` folder)
or the generated Paddle inference library path (`build/paddle_inference_install_dir` folder);
`CUDA_LIB_DIR` is the CUDA library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cuDNN library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
littletomatodonkey's avatar
littletomatodonkey 已提交
198

littletomatodonkey's avatar
littletomatodonkey 已提交
199

M
update  
MissPenguin 已提交
200
* After the compilation is completed, an executable file named `ppocr` will be generated in the `build` folder.
littletomatodonkey's avatar
littletomatodonkey 已提交
201

M
MissPenguin 已提交
202

M
MissPenguin 已提交
203 204 205
<a name="23"></a>
### 2.3 Run the demo

M
update  
MissPenguin 已提交
206
Execute the built executable file:
M
MissPenguin 已提交
207
```shell
208 209 210
./build/ppocr [--param1] [--param2] [...]
```

A
andyjpaddle 已提交
211
**Note**:ppocr uses the `PP-OCRv3` model by default, and the input shape used by the recognition model is `3, 48, 320`, if you do not use the default `PP-OCRv3` model, you should add the parameter `--rec_img_h=32`.
212

M
update  
MissPenguin 已提交
213 214 215
Specifically,

##### 1. det+cls+rec:
216 217 218 219 220 221 222 223 224 225 226
```shell
./build/ppocr --det_model_dir=inference/det_db \
    --rec_model_dir=inference/rec_rcnn \
    --cls_model_dir=inference/cls \
    --image_dir=../../doc/imgs/12.jpg \
    --use_angle_cls=true \
    --det=true \
    --rec=true \
    --cls=true \
```

M
update  
MissPenguin 已提交
227
##### 2. det+rec:
228 229 230 231 232 233 234 235 236 237
```shell
./build/ppocr --det_model_dir=inference/det_db \
    --rec_model_dir=inference/rec_rcnn \
    --image_dir=../../doc/imgs/12.jpg \
    --use_angle_cls=false \
    --det=true \
    --rec=true \
    --cls=false \
```

M
update  
MissPenguin 已提交
238
##### 3. det
239 240 241 242 243
```shell
./build/ppocr --det_model_dir=inference/det_db \
    --image_dir=../../doc/imgs/12.jpg \
    --det=true \
    --rec=false
244
```
M
MissPenguin 已提交
245

M
update  
MissPenguin 已提交
246
##### 4. cls+rec:
littletomatodonkey's avatar
littletomatodonkey 已提交
247
```shell
248 249 250 251 252 253 254
./build/ppocr --rec_model_dir=inference/rec_rcnn \
    --cls_model_dir=inference/cls \
    --image_dir=../../doc/imgs_words/ch/word_1.jpg \
    --use_angle_cls=true \
    --det=false \
    --rec=true \
    --cls=true \
Z
zhoujun 已提交
255
```
256

M
update  
MissPenguin 已提交
257
##### 5. rec
M
MissPenguin 已提交
258
```shell
259 260 261 262 263 264
./build/ppocr --rec_model_dir=inference/rec_rcnn \
    --image_dir=../../doc/imgs_words/ch/word_1.jpg \
    --use_angle_cls=false \
    --det=false \
    --rec=true \
    --cls=false \
Z
zhoujun 已提交
265
```
266

M
update  
MissPenguin 已提交
267
##### 6. cls
M
MissPenguin 已提交
268
```shell
269 270 271
./build/ppocr --cls_model_dir=inference/cls \
    --cls_model_dir=inference/cls \
    --image_dir=../../doc/imgs_words/ch/word_1.jpg \
M
MissPenguin 已提交
272
    --use_angle_cls=true \
273 274 275
    --det=false \
    --rec=false \
    --cls=true \
M
MissPenguin 已提交
276 277
```

M
update  
MissPenguin 已提交
278
More parameters are as follows,
M
MissPenguin 已提交
279

M
update  
MissPenguin 已提交
280
- Common parameters
M
MissPenguin 已提交
281

M
update  
MissPenguin 已提交
282 283 284 285 286 287 288 289
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|use_gpu|bool|false|Whether to use GPU|
|gpu_id|int|0|GPU id when use_gpu is true|
|gpu_mem|int|4000|GPU memory requested|
|cpu_math_library_num_threads|int|10|Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed|
|enable_mkldnn|bool|true|Whether to use mkdlnn library|
|output|str|./output|Path where visualization results are saved|
M
MissPenguin 已提交
290

291

M
update  
MissPenguin 已提交
292 293 294
- forward

|parameter|data type|default|meaning|
295 296 297 298 299 300
| :---: | :---: | :---: | :---: |
|det|bool|true|前向是否执行文字检测|
|rec|bool|true|前向是否执行文字识别|
|cls|bool|false|前向是否执行文字方向分类|


M
update  
MissPenguin 已提交
301
- Detection related parameters
M
MissPenguin 已提交
302

M
update  
MissPenguin 已提交
303 304 305 306 307 308 309 310 311
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|det_model_dir|string|-|Address of detection inference model|
|max_side_len|int|960|Limit the maximum image height and width to 960|
|det_db_thresh|float|0.3|Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result|
|det_db_box_thresh|float|0.5|DB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate|
|det_db_unclip_ratio|float|1.6|Indicates the compactness of the text box, the smaller the value, the closer the text box to the text|
|det_db_score_mode|string|slow| slow: use polygon box to calculate bbox score, fast: use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.|
|visualize|bool|true|Whether to visualize the results,when it is set as true, the prediction results will be saved in the folder specified by the `output` field on an image with the same name as the input image.|
M
MissPenguin 已提交
312

M
update  
MissPenguin 已提交
313
- Classifier related parameters
M
MissPenguin 已提交
314

M
update  
MissPenguin 已提交
315 316 317 318 319 320
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|use_angle_cls|bool|false|Whether to use the direction classifier|
|cls_model_dir|string|-|Address of direction classifier inference model|
|cls_thresh|float|0.9|Score threshold of the  direction classifier|
|cls_batch_num|int|1|batch size of classifier|
M
MissPenguin 已提交
321

M
update  
MissPenguin 已提交
322
- Recognition related parameters
M
MissPenguin 已提交
323

M
update  
MissPenguin 已提交
324 325 326 327 328
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|rec_model_dir|string|-|Address of recognition inference model|
|rec_char_dict_path|string|../../ppocr/utils/ppocr_keys_v1.txt|dictionary file|
|rec_batch_num|int|6|batch size of recognition|
A
andyjpaddle 已提交
329
|rec_img_h|int|48|image height of recognition|
A
andyjpaddle 已提交
330
|rec_img_w|int|320|image width of recognition|
M
MissPenguin 已提交
331

M
update  
MissPenguin 已提交
332
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `rec_char_dict_path` and `rec_model_dir`.
M
MissPenguin 已提交
333

Z
zhoujun 已提交
334

M
update  
MissPenguin 已提交
335
The detection results will be shown on the screen, which is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
336

337 338 339
```bash
predict img: ../../doc/imgs/12.jpg
../../doc/imgs/12.jpg
340 341 342 343
0       det boxes: [[74,553],[427,542],[428,571],[75,582]] rec text: 打浦路252935号 rec score: 0.947724
1       det boxes: [[23,507],[513,488],[515,529],[24,548]] rec text: 绿洲仕格维花园公寓 rec score: 0.993728
2       det boxes: [[187,456],[399,448],[400,480],[188,488]] rec text: 打浦路15号 rec score: 0.964994
3       det boxes: [[42,413],[483,391],[484,428],[43,450]] rec text: 上海斯格威铂尔大酒店 rec score: 0.980086
344 345
The detection visualized image saved in ./output//12.jpg
```
littletomatodonkey's avatar
littletomatodonkey 已提交
346

M
update  
MissPenguin 已提交
347

M
MissPenguin 已提交
348
<a name="3"></a>
文幕地方's avatar
文幕地方 已提交
349
## 3. FAQ
littletomatodonkey's avatar
littletomatodonkey 已提交
350

M
update  
MissPenguin 已提交
351
 1.  Encountered the error `unable to access 'https://github.com/LDOUBLEV/AutoLog.git/': gnutls_handshake() failed: The TLS connection was non-properly terminated.`, change the github address in `deploy/cpp_infer/external-cmake/auto-log.cmake` to the https://gitee.com/Double_V/AutoLog address.